Document Type : Original Article


1 Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran

2 . Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran

3 Department of Physics, Isfahan University of Technology, Isfahan, Iran


In this study, the structural and electronic properties of III-V semiconductor compounds are studied using Density Functional Theory computations within the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. After considering several exchange-correlation functionals, it is determined that the SOGGA and GGA-WC functionals are suitable alternatives for calculating the structural properties of the desired compounds. For the calculation of electronic properties, particularly the energy band gap, the GGA-EV functional and the TB-mBJ exchange potential with spin-orbit correction are approved. The results show that the exchange potential TB-mBJ + SOC accurately calculates the band gap of these compounds. In the case of materials such as TlAs, which have negative band gaps, it is found that the exchange potential TB-mBJ is not able to predict this gap; in fact, the gap is set to zero. For the calculation of the effective mass, several methods are used; after comparing with experimental data, it is found that the GGA-PBE and GGA-EV functionals calculate this quantity for small band gap and large band gap materials, respectively; this is done with proper accuracy and of course,   the best effective mass results are obtained with the method of hybrid functional HSEbgfit. It is also found that the spin-orbit correction makes the calculated effective mass results closer to the experimental values.


  1. A Assali, M h Bouslama, A Reshak, S Zerroug, and H Abid, Optik135 (2017) 57.

  2. M Hadjab, S Berrah, H Abid, M I Ziane, H Bennacer, and B G Yalcin, Optik127 (2016) 9280.

  3. M Othman, E Kasap, and N Korozlu, Journal of Alloys and Compounds496 (2010) 226.

  4. M Ferhat and A Zaoui, Physical Review B73 (2006) 115107.

  5. A H Reshak, H Kamarudin, S Auluck, and I Kityk, Journal of Solid State Chemistry186 (2012) 47.

  6. S Z Karazhanov and L L Y Voon, Semiconductors39 (2005) 161.

  7. R Ahmed, S J Hashemifar, H Akbarzadeh, and M Ahmed, Computational Materials Science 39 (2007) 580.

  8. P Hohenberg and W Kohn, Physical Review 136 (1964) B864.

  9. S Mankefors and S Svensson, Journal of Physics: Condensed Matter,12 (2000) 1223.

  10. S Gulebaglan, E Dogan, M Aycibin, M Secuk, B Erdinc, and H Akkus, Open Physics 11 (2013) 1680.

  11. Y Yao, D König, and M Green, Solar Energy Materials and Solar Cells 111 (2013) 123.

  12. M Aslan, B G Yalçın, and M Üstündağ, Journal of Alloys and Compounds519 (2012) 55.

  13. Z Feng, H Hu, S Cui, W Wang, and C Lu, Open Physics7 (2009) 786.

14. ح تشکری، ف کنجوری و ع نجاتی، مجله پژوهش فیزیک ایران 14، 4 (1393) 221.

15. ح باده‌یان، ح صالحی و م فربد، مجله پژوهش فیزیک ایران 15، 1 (1394) 1.

16. ر فتحی و ط مولاروی، مجله پژوهش فیزیک ایران 16، 1 (1395) 35.

  1. J P Perdew, Physical Review B33 (1986) 8822.

  2. H Mazouz, A Belabbes, A Zaoui, and M Ferhat, Superlattices and Microstructures 48 (2010) 560.

  3. L Shi, Y Duan, and L Qin, Computational Materials Science 50 (2010) 203.

  4. Z Wu and R E Cohen, Physical Review B73 (2006) 235116.

  5. Y Zhao and D G Truhlar, The Journal of Chemical Physics 128 (2008) 184109.

  6. F Tran and P Blaha, Physical Review Letters 102 (2009) 226401.

  7. F E H Hassan, A Postnikov, and O Pagès, Journal of Alloys and Compounds 504 (2010) 559.

  8. M I Ziane, Z Bensaad, T Ouahrani, and H Bennacer, Materials Science in Semiconductor Processing 30 (2015) 181.

  9. M Van Schilfgaarde, A B Chen, S Krishnamurthy, and A Sher, Applied Physics Letters 65 (1994) 2714.

  10. J ZHOU, X- M REN, Y- Q HUANG, Q WANG, and H HUANG, Chinese Physics Letters 25 (2008) 3353.

  11. S Kacimi, H Mehnane, and A Zaoui, Journal of Alloys and Compounds 587 (2014) 451.

  12. P Haas, F Tran, and P Blaha, Physical Review B79 (2009) 085104.

  13. B Peter, et al, Journal of Chemical Physics 152.7 (2020) 074101.

  14. J P Perdew, K Burke, and M Ernzerhof, Errata:(1997) Physical Review Letters 78 (1996) 1396.

  15. E Engel and S H Vosko, Physical Review B47 (1993) 13164.

  16. F Tran, P Blaha, and K Schwarz, Journal of Physics: Condensed Matter 19 (2007) 196208.

  17. I Bhat, Wide Bandgap Semiconductor Power Devices (2019) 43.

  18. J Heyd, G E Scuseria, and M Ernzerhof, The Journal of Chemical Physics 118 (2003) 8207.

  19. F Murnaghan, Proceedings of the National Academy of Sciences of the United States of America 30 (1944) 244.

  20. C Filippi, D J Singh, and C J Umrigar, Physical Review B50 (1994) 14947.

  21. S Hussain, S Dalui, R Roy, and A Pal, Journal of Physics D: Applied Physics,39 (2006) 2053.

  22. S Adachi, Properties of Semiconductor Alloys: Group- IV, III- V and II- VI Semiconductors 28: John Wiley & Sons (2009).

  23. R Ahmed, S J Hashemifar, H Rashid, and H Akbarzadeh, Communications in Theoretical Physics 52 (2009) 527.

  24. O Madelung, Semiconductors: Data Handbook: Springer Science & Business Media (2012).

  25. G B Akyüz, A Tunali, S Gulebaglan, and N Yurdasan, Chinese Physics B25 (2015) 027101.

  26. D Koller, F Tran, and P Blaha, Physical Review B85 (2012) 155109.

  27. M I Ziane, Z Bensaad, B Labdelli, and H Bennacer, Sensors & Transducers 27 (2014) 374.

  28. O Madelung, New series (1982) 571.

  29. I Vurgaftman, J á Meyer, and L á Ram- Mohan, Journal of Applied Physics 89 (2001) 5815.

  30. A Owens and A Peacock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 531 (2004) 18.

  31. Y- S Kim, M Marsman, G Kresse, F Tran, and P Blaha, Physical Review B82 (2010) 205212.

  32. Y Wang, H Yin, R Cao, F Zahid, Y Zhu, L Liu, J Wang, and H Guo, Physical Review B87 (2013) 235203.

تحت نظارت وف ایرانی