Document Type : Original Article

Authors

1 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

2 1. School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 2. Department of Physics, Sharif University of Technology, Tehran, Iran

Abstract

The presence of sufficiently light particles in the fundamental Lagrangian could trigger instability in rotating black holes, the so-called superradiance instability. In particular, axion and axion-like-particles (ALPs) are good candidates to prompt such an instability. As a result, a high-density axion cloud forms around the black hole. The system of black holes and the axion cloud surrounding it is called a gravitational atom. Examining the evolution of this gravitational atom could lead to the discovery of an axion or introduce new constraints on their parametric space. The axion cloud becomes unstable under certain conditions when axion-photon interactions and axion self-interactions are considered. The nature of these instabilities is the parametric resonance. In this paper, we obtain an upper bound for the rate of this instability. The results show that for the simplest axion models, this instability occurs at a very low rate because, before the resonance becomes effective, self-interactions cause the axion cloud to collapse. But for some exotic models, the resonance rate could be large enough to introduce observable effects. In addition, we will show that the parametric resonance caused by self-interactions never happens at a significant level.

Keywords

  1. R D Peccei and H R Quinn, Phys. Rev. Lett. 38 (1977) 1440.

  2. S Weinberg, Phys. Rev. Lett. 40 (1978) 223.

  3. F Wilczek, Phys. Rev. Lett. 40 (1978) 279.

  4. E Armengaud et al., [IAXO Collaboration], arXiv:1904.09155 [hep-ph].

  5. B Lakic et al., [CAST Collaboration], PoS HEP 2005 (2006) 022.

  6. L F Abbott and P Sikivie, Phys. Lett. B 120, (1983) 133. [Phys. Lett. 120 B 133 (1983)].

  7. M Dine and W Fischler, Phys. Lett. B 120 (1983) 137. [Phys. Lett. 120 B 137 (1983)].

  8. J E Kim and G Carosi, Rev. Mod. Phys. 82 (2010) 557.

  9. J Preskill, M B Wise and F Wilczek, Phys. Lett. B 120 (1983) 127. [Phys. Lett. 120 B, 127 (1983)].


10. L Bergstrom, New J. Phys. 11 (2009) 105006.


11. M Fairbairn, R Hogan, and D J E Marsh, Phys. Rev. D 91, 2 (2015) 023509.


12. N Du et al., [ADMX Collaboration], Phys. Rev. Lett. 120, 15 (2018) 151301 doi:10.1103/ Phys. Rev. Lett. 120. 151301 [arXiv:1804.05750 [hep-ex]].


13. B Majorovits et al., [MADMAX interest Group], arXiv:1712.01062 [physics.ins-det].


14. B.R Safdi, Z Sun, and A Y Chen, arXiv:1811.01020 [astro-ph.CO].


15. T Liu, G Smoot, and Y Zhao, arXiv:1901.10981 [astro-ph.CO].


16. R Brito, V Cardoso, and P Pani, Lect. Notes Phys. 906 (2015) 1.


17. F V Day and J I McDonald, arXiv:1904.08341 [hep-ph].


18. V Cardoso, R Brito and J L Rosa, Phys. Rev. D 91, 12 (2015) 124026.


19. V Cardoso, P Pani, and T T Yu, Phys. Rev. D 95, 12 (2017) 124056.


20. A Arvanitaki and S Dubovsky, Phys. Rev. D 83 (2011) 044026.


21. A Arvanitaki, M Baryakhtar, and X Huang, Phys. Rev. D 91, 8 (2015) 084011.


22. R Brito, S Ghosh, E Barausse, E Berti, V Cardoso, I Dvorkin, A Klein, and P Pani, Phys. Rev. Lett. 119, 13 (2017) 131101.


23. J G Rosa and T W Kephart, Phys. Rev. Lett. 120, 23 (2018) 231102.


24. T Ikeda, R Brito, and V Cardoso, Phys. Rev. Lett. 122, 8 (2019) 081101.


25. A Hook, arXiv:1812.02669 [hep-ph].


26. C A Baker et al., Phys. Rev. Lett. 97 (2006) 131801.


27. C Vafa and E Witten, Phys. Rev. Lett. 53 (1984) 535.


28. J E Kim, Phys. Rept. 150 (1987) 1.


29. M Srednicki, Nucl. Phys. B 260 (1985) 689.


30. D J E Marsh, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633 [astro-ph.CO]]


31. J E Kim, Phys. Rev. Lett. 43 (1979) 103.  


32. M A Shifman, A I Vainshtein, and V I Zakharov, Nucl. Phys. B 166 (1980) 493.


33. M Dine, W Fischler and M Srednicki, Phys. Lett. 104B 199 (1981).


34. A R Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 260.


35. M P Hertzberg and E D Schiappacasse, JCAP 1811, 11 (2018) 004.


36. S L Detweiler, Phys. Rev. D 22 (1980) 2323.


37. V Cardoso and S Yoshida, JHEP 0507 (2005) 009.


38. S R Dolan, Phys. Rev. D 76 (2007) 084001.


39. W E East and F Pretorius, Phys. Rev. Lett. 119, 4 (2017) 041101.


40. W E East, Phys. Rev. Lett. 121, 13 (2018) 131104.


41. Y B Zel’dovich, 1971. Pis. Zh. Eksp. Teor. Fiz. 14, 270 (1971).


42. Y B Zel’dovich 1972. Zh. Eksp. Teor. Fiz. 62 (1971) 2076.


43. W H Press and S A Teukolsky, Nature 238 (1972) 211.


44. S A Teukolsky, Astrophys. J. 185 (1973) 635.


45. W H Press and S A Teukolsky, Astrophys. J. 185 (1973) 649.


46. S A Teukolsky and W H Press, Astrophys. J. 193 (1974) 443.


47. D N Page, Phys. Rev. D 13 (1976) 198.


48. M H Namjoo, A H Guth, and D I Kaiser, Phys. Rev. D 98, 1 (2018) 016011.


49. D Baumann, H S Chia, and R A Porto, Phys. Rev. D 99, 4 (2019) 044001.


50. M Yoshimura, Prog. Theor. Phys. 94 (1995) 873.


51. M Yoshimura, hep-ph/9603356.


52. I I Tkachev, Phys. Lett. B 261 (1991) 289.


53. A Riotto and I Tkachev, Phys. Lett. B 484 (2000) 177.


54. C Chicone, “Ordinary Differential Equations with Applications”. Springer-Verlag, New York (1999).


55. K. T. Hecht, Quantum Mechanics, Springer (2000).


56. M Boskovic, R Brito, V Cardoso, T Ikeda, and H Witek, Phys. Rev. D 99, 3 (2019) 035006.


57. H Yoshino and H Kodama, Prog. Theor. Phys. 128 (2012) 153.


58. H Yoshino and H Kodama, Class. Quant. Grav. 32, 21 (2015) 214001.



  1. E A Donley, N R Claussen, S L Cornish, J L Roberts, E A Cornell, and C E Wieman, Nature 412 (2001) 295.

ارتقاء امنیت وب با وف ایرانی