Document Type : Original Article


1. Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran


The graphene-like phase of boron atoms was recently synthesized on Al (111) substrate. This two dimensional material which is unstable without the substrate is improved to a stable structure after being combined with oxygen. In this research, mechanical and electronic transport properties of graphene-like borophene oxide (g-B2O) has been investigated within density functional theory framework and non-equilibrium Green’s function, for this purpose total and partial density of states, energy band structure, charge density, elastic constants, Young's modulus, Poisson's ratio, quantum conductance, and current-voltage characteristics have been calculated by applying small uniaxial and biaxial strains. The results show that g-B2O is a metal and has a Dirac point like graphene with a linear dispersion energy at a position above the Fermi level. In addition, the current-voltage curves display the Ohmic behavior of this material and exhibit that positive strain reduces the current density in armchair direction ( ) and increases the current density in zigzag direction of ( ) compared to without strain . The positive biaxial and uniaxial strains in armchair direction with almost similar behavior have the most variations in and . Besides, the negative strain in zigzag direction causes the most increasing. The negative uniaxial strain in armchair direction and negative biaxial strain with almost analogous behavior caused the most (the least) changes in ( ). The anisotropic current density along zigzag and armchair directions as well as the ability to control this anisotropy by positive and negative strains make this material suitable to usage in nanoelectronic devices.


  1. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, and A A Firsov, Science 306 (2004) 666.

  2. G Liu, X L Lei, M S Wu, B Xu, and C Y Ouyang, J. Phys. Condens. Matter 26 (2014) 355007.

  3. G Liu, S B Liu, B Xu, C Y Ouyang, H Y Song, S Guan, and S A Yang, J. Phys. Chem. Lett. 6 (2015) 4936.

  4. X R Hu, J M Zheng, and Z Y Ren, Front. Phys. 13 (2017) 137302.

  5. K Watanabe, T Taniguchi, and H Kanda, Nat. Mater. 3 (2004) 404.

  6. Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman, and M S Strano, Nat. Nano technol. 7 (2012) 699.

  7. A J Mannix, et al. Science 350 (2015) 1513.

  8. B Feng, J Zhang, Q Zhong, et al. Nature Chem. 8 (2016) 563.

  9. Z Zhang, Y Yang, G Gao, and B I Yakobson, Angew. Chem. Int. Ed. 54 (2015) 13022.

10. W Xiaojun, D Jun, Z Yu, Z Zhiwen, Y Jinlong, and C Z Xiao, ACS Nano 6 8 (2012) 7443.

11. Z Zhang, E S Penev, and B I Yakobson, Chem. Soc. Rev. 46 22 (2017) 6746.

12. L Kong, K Wu, and L Chen, Front. Phys. 13 3 (2018)138105.

13. X Liu, Z Zhang, L Wang, B I Yakobson, and M C Hersam, Nat. Mater. 17 9 (2018) 783.

14. ZQ Wang, TY Lü, HQ Wang, et al, Front. Phys. 14 (2019) 33403. 

15. V Wang and W T Geng, J. Phys. Chem. C 121 (18) (2017) 10224.

16. H F Wang, Q F Li, Y Gao, F Miao, X F Zhou, and X G Wan, New J. Phys. 18 7 (2016) 073016.

17. Y X Liu, Y J Dong, Z Y Tang, X F Wang, L Wang, T J Hou, H P Lin, and Y Y Li, J. Mater. Chem. C 4 26 (2016) 6380.

18. H Xiao, W Cao, T Ouyang, S Guo, C He, and J Zhong, Sci. Rep. 7 (2017) 45986

19. B Peng, H Zhang, H Z Shao, Y F Xu, R J Zhang, and H Y Zhu, J. Mater. Chem. C 4 16 (2016) 3592.

20. E S Penev, A Kutana, and B I Yakobson, Nano Lett. 16 4 (2016) 2522.

21. R C Xiao, D F Shao, W J Lu, H Y Lv, J Y Li, and Y P Sun, Appl. Phys. Lett. 109 12 (2016) 122604.

22. W Li, L Kong, C Chen, J Gou, S Sheng, W Zhang, H Li, L Chen, P Cheng, K Wu, Science Bulletin 63 (2018) 282.

23. C Zhong, W Wu, J He, G Ding, Y Liu, D Li, S A Yang, and G Zhang, Nanoscale 11 (2019) 2468.

24. S Faizabadi and Z Kargar, Iran. J. Phys. Res. 12, 1 (2012) 1.

25. P Giannozzi, et al., J. Phys. Condens. Matter 21 (2009) 395502.

26. A Ferretti, B Bonferroni, A Calzolari, and M Buongiorno Nardelli,

27. C Lee, B Feng, M D’angelo, R Yukawa, R Liu, T Kondo, H Kumigashira, I Matsuda, and T Ozaki, Phys. Rev. B 97 (2018) 075430.

28. H J Monkhorst, J D Pack, Phys. Rev. B 13 (1976) 5188.

29. X Fan, D Ma, B Fu, C Liu, and Y Yao, Phys. Rev. B 98 (2018) 195437.

30. T Farajollahpour, Z Faraei, and S A Jafari, Phys. Rev. B 99 (2019) 235150.

31. R Ebrahimi-Jaberi, J Nematollahi, H Gharagoozloo, S Jalali-Asadabadi, and M Jamal, Iran. J. Phys. Res. 19, 1 (2019) 37.

32. S. Datta, “Electronic Transport in Mesoscopic Systems”, Cambridge university press (1997).

33. M Pashangpour, Comput. Mater. Sci. 168 (2019) 74.

ارتقاء امنیت وب با وف ایرانی