Document Type : Research Note

Authors

Condenced Matter Physics, Department of Physics, University of Kashan, Kashan, Iran

Abstract

In the present study we introduce a concept to generate spin-polarized current in armchair transition metal dichalcogenides nanoribbons (TMDNs) using light irradiation. The spin-photocurrent properties are investigated by nonequilibrium Green's function formalism and electron-electron intraction. Because of  intrinsic spin-orbit couplying, light irradiation produce spin- photocurrent in TMDNs whitout applying any external magnetic element. Morevere, transverse electric field modifies the magnitude and positin of optical absorption peaks and also, the magnitude of the spin-phtocurrent. Finally, the fully spin-polarized photocurrent, the high quantum efficiency with a maximum of approximately 50%, the wide-wavelength-range operation from ultraviolet to infrared and optical spin-filtering effects, that are tunable with transverse electric field, indicate the high performance of this spin-photodetectors based on armchair TMDNs and pave the way toward the improved design and performance of this photodetectors in spin-optoelectronic.
 

Keywords

  1. S Manzeli, D Ovchinnikov, D Pasquire, O.V Yazyev, A Kis, Nature Reviews Materials 2, 8 (2017) 17033.

  2. A Pospischil, and T Mueller, Applied Sciences 6, 3 (2016) 78.

  3. QH Wang, K Kalantar-Zade, A Kis, JN Coleman, and MS Strano, Nature nanotechnology 7, 11 (2012) 699.

  4. M Koperski, M R Molas, A Arora, K Nogajewski, A O Slobodeniuk, C Faugeras, and M Potemski, Nanophotonics 6, 6 (2017) 1289.

  5. H Tian, M L Chin, S Najmaei, Q Guo, F Xia, H Wang, and M Dubey, Nano Research 9, 6 (2016) 1543.

  6. K F Mak and J Shan, Nature Photonics 10, 4 (2016) 216.

  7. Z Yin, H Li, H Li, L Jiang, Y Shi, Y Sun, G Lu, Q Zhang, X Chen, and H Zhang , ACS Nano 6 (2012) 74.

  8. B W Baugher, H O Britton, Y Yang, and P Jarillo-Herrero, Nature nanotechnology 9, 4 (2014) 262.

  9. W Choi, N Choudhary, G H Han, J Park, D Akinwande, and Y H Lee, Materials Today 20, 3 (2017) 116.


10. J A Reyes-Retana and F Cervantes-Sodi, Scientific reports 6 (2016) 24093.


11. N Zibouche, A Kuc, J Musfeldt, and T Heine, Annalen der Physik 526, 9-10 (2014) 395.


12. F, Khoeini, Kh Shakouri, F. M. Peeters, Physical Review B 94,12 (2016) 125412.


13. X Xu, W Yao, D Xiao, and T F Heinz, Nature Physics 10, 5 (2014) 343.


14. S Zamani and R Farghadan, Journal of Physics D: Applied Physics 51,30 (2018) 305103.


15. L Liu, E J Lenferink, G Wei, T K Stanev, N Speiser, and N P Stern, ACS applied materials & interfaces 11, 3 (2018) 3334.


16. X Chen, T Yan, B Zhu, S Yang, and X Cui. ACS nano 11, 2 (2017)1581.


17. A Heshmati-Moulai, H Simchi, and M Esmaeilzadeh, The European Physical Journal B 90, 7 (2017) 128.


18. M L Sancho, J L Sancho, J L Sancho, and J J Rubio, Phys. F: Met. Phys. 15 (1985) 851.


19. S Zamani and R Farghadan, Physical Review Applied 10, 3 (2018) 03405.


D Xiao, GB Liu, W Feng, X Xu, and W Yao, Physical review letters 108 (2012) 196802.

تحت نظارت وف ایرانی