Document Type : Original Article

Authors

Department of Physical Chemistry, Faculty of Science, Malayer University, Malayer, Iran

Abstract

In present research,  the electrical, structural, quantum and NMR parameters of interaction of N2O gas on the B and P sites of pristine, Ga-, Si- and SiGa-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) are investigated by using density functional theory (DFT).  For this purpose, we consider seven models for adsorption of N2O gas on the exterior surfaces of BPNTs and then all structures are optimized by B3LYP level of theory and 6–31G (d) base set. The optimized structures are used to calculate the electrical, structural, quantum and NMR parameters. The computational results reveal that the adsorption energy of all studied models of BPNTs is negative values and all processes are exothermic and favorable in thermodynamic approach. When N2O gas is adsorbed from its O atom head on the B site of nanotube, N2O gas dissociated to O atom and N2 molecule. The adsorption energy of this process is more than those of other models and more stable than other models.  In A, B and C models the global hardness decrease significantly from original values and so the activity of nanotube increases from original state. On the other hand, the electrophilicity index (ω), electronic chemical potential (μ), electronegativity (χ) and global softness (S) of the A, B and C  models increase significantly from original value and the CSI values of the C model are larger than those of other models. The results demonstrate that the Ga-, Si- and SiGa- doped BPNTs are good candidates to adsorbing and making N2O gas sensor.

Keywords

  1. A S Tarendash, Let's review: chemistry, the physical setting, Barron's Educational Series (2004). 

  2. M Iwamotoand H Hamada, Catal. Today 10 (1991) 57.

  3. F Kaptein, J Rodriguez-Mirasol, and J A Moulijn, App. Cataly B 9 (1996) 25.

  4. G Delahay, M Mauvezin, B Coq, and S Kieger, J. Cataly 202 (2001) 156.

  5. B Coq, M Mauvezin, G Delahay, J B Butet, and S Kieger, App. Cataly B 27 (2000)193.

  6. B Moden, P Da Costa, B Fonfe, D Ki Lee, and E Iglesia, J. Cataly 209 (2002) 75.

  7. A Martinez, A Goursot, B Coq, and G Delahay, J. Phys. Chem. B 108 (2004) 8823.

  8. A R Ravishankara, J S Daniel, and R W Portmann, Science 326 (2009) 23.

  9. M T Baei, A Soltani, A V Moradi, and E Tazikeh Lemeski, Com. Theo. Chem. 970 (2011) 30.


10. M T Baei and A  Soltani, A V Moradi, M Moghimi, Monatsh Chem. 142 (2011) 573.


11. A Soltani, M Ramezani Taghartapeh, E Tazikeh Lemeski, M Abroudi, and H Mig, Superlatt Microstruct 58 (2013)178.


12. X Solans-Monfort, M Sodupe, and V Branchadell, Chem. Phys. Lett. 368 (2003) 42.


13. M Mirzaei, Z Phys. Chem. 223 (2005) 815.



  1. 14.  M T Baei, A Varasteh Moradi, P Torabi, and M Moghimi, Monatsh Chem. 142 (2011) 1097.


15. M T Baei, A Ahmadi Peyghan, and M Moghimi, Monatsh Chem. 143 (2012) 1627. 


16. M T Baei, Monatsh Chem. 143 (2012) 881.


17. M Mirzaei, J. Mol. Model 17 (2011) 89.


18. A Ahmadi Peyghan M T, Baei, M Moghimi, and S Hashemian, J. Clust. Sci 24 (2013) 49.


19. M T Baei, A Varasteh Moradi, P Torabi, and M Moghimi, Monatsh Chem 143 (2012) 37.


20. K Li, W Wang, D Cao, Sens Actuat B Chem. 159 (2011)171.


21. M Rezaei-Sameti, Physica B 407 (2012)3717.


22. M Rezaei-Sameti, Physica E 44 (2012)1770.


23. M Rezaei-Sameti and S Yaghobi, Comp. Condense Matt. 3 (2015) 21.


24. M Rezaei-Sameti, Physica B 407 (2012) 22.


25. M Rezaei-Sameti, E A Dadfar, Iran. J. Phys. Res. 15 (2015) 41.


26. M J Frisch, et al., GAUSSIAN 03 (2003).


27. P K Chattaraj, U Sarkar, and D R Roy, Chem. Rev. 106 (2006) 2065.


28. K K Hazarika, N C Baruah, and R C Deka, Struct. Chem. 20 (2009)1079.


29. R G Parr, L Szentpaly, and S Liu, J. Am. Chem. Soc. 121(1999) 1922.


30. C Tabtimsai, S Keawwangchai, N Nunthaboot, V Ruangpornvisuti,and B Wanno, J Mol Model 18 (2012) 3941.



  1. A E Reed, L A Curtiss, F Weinhold, Chem. Rev. 88 (1988) 899.

ارتقاء امنیت وب با وف ایرانی