Document Type : Original Article

Authors

Atomic and Molecular Physics Group, Faculty of Basic Sciences, University of Mazandaran, Iran

Abstract

The nonlinear interactions of coupled nanowires are important phenomena in data processing of integrated photonic circuits. In this paper, we investigate the nonlinear coupling of two silver nonlinear coupled plasmonic nanowires for TM00 and TM10 modes under different amplitudes in the presence of Kerr effect, and the other case that the medium has Kerr and two photon absorption (TPA) effect too. The results show that in the presence of TPA effect the nonlinear optical effects appear in lower input amplitudes than Kerr effect. The Kerr effect occurs in upper intensities than the TPA effect and nonlinear optical effect leads to decrease the exchange of plasmonic waves between two nanowires. Also, the coupling length (Lc), that it means the characteristic length of the structure has a lower coupling distance that through propagating in the medium the transfer of the wave is completely, in TM00 mode is lower than TM10 mode. Also, the results show that for different values of initial amplitudes of field in a fixed value of Lc, the coupling efficiency increases with increasing the value of intensity.

Keywords

  1. Z Wang, Q Weibin, R Junbo, L Zhili, Q Pingping, and K Qiang, Photonics and Nanostructures-‎Fundamentals and Applications 37 (2019) 100745.‎

  2. W L Barnes, A. Dereux, and T.W. Ebbesen, Nature‎‏ ‏‎424 (2003) 824.‎

  3. ‎B Korzh, et al., Nature Photonics 14 (2020) 250.‎

  4. ‎D Xie, et al., Nature Communications 10 (2019) 4478.‎

  5. ‎Q Bao, et al., Light‎‏:‏‎ Science and Applications 9 (2020) 1.‎

  6. ‎ S Mokkapati, D. Saxena, H. Tan, C. Jagadish, Sci. Rep 5 (2015) 15339.‎

  7. ‎ R Veld, et al., Commun. Phys, 59 (2020) 1.‎

  8. ‎ Ch Kim, et al., Sci. Rep, 10 (2020) 9271.‎

  9. ‎D Pines, D. Bohm, Phys. Rev. 85 (1952) 338.‎


10. ‎ A Alipour, A. Mir, A. Farmani, optics and laser technology 127 (2020) 106201.‎


11. ‎ S F Haddawi, H. R. Humud, S. M. Hamidi, optics and laser technology 121 (2020) 105770.‎


12. ‎A M El-Mahalawy, A R Wassel, optics and laser technology 131 (2020) 106395.‎


13. ‎M H Motavas, A Zarifkar, optics and laser technology 111 (2019) 315.‎


14. ‎ J KiKim, et al., optics and laser technology 112 (2019) 151.‎


15. ‎ Z Wang, Q Weibin, R Junbo, L Zhili, Q Pingping, and K Qiang, Photonics and ‎Nanostructures-Fundamentals and Applications 37 (2019) 100745. ‎


16. ‎ D N Christodoulides, F Lederer, and Y Silberberg, Nature 424 (2003) 817.‎


17. ‎‎‏ ‏Y Lahini, A Avidan, F Pozzi, M Sorel, R Morandotti, D N‎‏ ‏Christodoulides, and Y Silberberg, ‎Phys. Rev. Lett. 100‎‏ ‏‎(2008) 013906.‎


18. ‎ A Ghadi, S Mirzanezhad, F Sohbatzadeh, Photonics and Nanostructures-Fundamentals and ‎Applications. 7 (2009) 198.‎


19. ‎Z Cherpakova et al., Opt. Lett. 42 (2017) 2165.‎


20. ‎ S L Chuang, J. Lightwave Technol. 5 (1987) 174.‎


21. ‎ J P Kottmann and O Martin, Opt. Express. 8 (2001) 655.‎


22. ‎‎‏ ‏F Ye, D Mihalache, B Hu, and N C Panoiu, Phys. Rev. Lett. 104 (2010) 106802.‎


23. ‎ S Sun, C Hung-Ting, Opt. Exp. 21 (2013) 4591.‎


24. ‎ J Takahara, et al., Opt. Lett. 22 (1997) 475.‎


25. ‎ M Kauranen and A V Zayats, Nat. Photonics 6 (2012) 737. ‎


26. ‎F Ye, D Mihalache, B Hu, and N C Panoiu, Opt. Lett. 36 (2011) 1179.‎


27. ‎ Y Kou, F Ye, and X Chen, Opt. Lett. 38 (2013) 1271.‎


28. ‎ S A Maier, Plasmonics: Fundamentals and Applications (2007) 224.‎


29. ‎ M A Ordal et al., Appl. Opt. 24 (1985) 4493.‎


30. ‎ Sh Y Chung, et al., J. Lightwave Technol. 30 (2012) 1733.‎


31. A Hardy and W Streifer, J. Lightwave Technol. 3 (1985) 1135‎.

تحت نظارت وف ایرانی