Document Type : Original Article
Authors
1 Department of Physics, University of Tabriz, Tabriz, Iran
2 Department of Physics, Liaoning Normal University, Dalian, China
Abstract
The aim of this paper is to calculate the effective quadruple deformation of different levels in the Nd isotopic chain in the framework of the boson interaction model. For this purpose, by labeling the selected states in the form of the dynamic limit of U(5), the expectation value of the quadruple interaction operator is calculated and the quadruple shape invariant and the Effective quadruple deformation of levels are obtained and compared to the corresponding experimental values, the effective boson charge for each isotope has been determined. The results show the existence of overlap in the values of the effective quadruple deformation of 0_3^+ and 2_1^+ levels in this isotopic chain. Also, a certain relationship is observed between the effective quadruple deformation values and the effective Boson charge and the spacing of the levels. The existence of this dependence for the Nd isotopic chain and the overlap of quantities can be reported as signs of shape coexistence in (_60^140)Nd and (_60^142)Nd and (_60^146)Nd isotopes.
Keywords
- J Xiang et al., Phys. Rev. C 98 (2018) 054308.
- Dario Vretenar, JPS Conf. Proc 23 (2018) 012017.
- S Mukhopadhyay et al, Physics Letters B 739 (2014) 462.
- J L Wood et al., Journal of Physics G Nuclear and Particle Physics 42 (2015)1.
- J E Garcia-Ramos, K Heyde, Physical Review C 100 (2019) 044315.
- S Sels et al., Physical Review C 99 (2019) 044306.
- J Liu, R Xu, J Zhang, C Xu, and Z Ren, J Phys. G Nucl. Part. Phys. 46 (2019) 055105.
- F Iachello and A Arima, “The Interacting Boson Model”, Cambridge University Press, Cambridge, England, (1987).
- F Iachello, “Interacting bosons in nuclear physics”, Springer Science & Business Media, (2012).
10. R Fossion, D Bonatsos, and G Lalazissis, Physical Review C 73 (2006) 044310.
11. R Casten, D Kusnezov, N Zamfir, Physical Review Letter. 82 (1999) 5000.
12. F Pan, J Draayer, Nuclear Physics A 636 (1998) 156.
13. A J Majarshin, H Sabri, Journal of Research on Many-body Systems 7 (2017) 33.
14. D Bonatsos, D Lenis, D Petrellis, and P Terziev, Physics Letter B 588 (2004) 172.
15. M M Hammad et al., Journal of Physics Communications 3 (2019) 085019.
16. P Van Isacker, AIP Conference Proceedings 2150 (2019) 020011.
17. H Sabri, International Journal of Modern Physics E 23 (2014) 1450056.
18. V Werner et al., Phys. Rev. C 78 (2008) 051303.
19. W D Kulp et al., Shape Coexistence and Mixing in 152Sm; arXiv:0706.4129v2 [nucl-ex] 28 Jun 2007.
20. P Koseoglou et al., Phys. Rev. C 101 (2020) 014303.
21. Z Elekes et al., Nuclear Data Sheets 129 (2015) 191.
22. B Singh, Nuclear Data Sheets 93 (2001) 33.
23. B Singh, Nuclear Data Sheets 104 (2005) 497.
24. A A. Sonzogni, Nuclear Data Sheets 103 (2004) 1.
25. A A Sonzogni, Nuclear Data Sheets 95 (2002) 837.
26. J Chen, Nuclear Data Sheets 146 (2017) 1.
27. N Nica, Nuclear Data Sheets 108 (2007) 1287.
28. T D Johnson et al, Nuclear Data Sheets 112 (2011) 1949.
29. A A Sonzogni, Nuclear Data Sheets 93 (2011) 599.
30. Y Khazov, Nuclear Data Sheets 136 (2016) 163.
31. N Nica, Nuclear Data Sheets 117 (2014) 1.
32. S K Basu, Nuclear Data Sheets 114 (2013) 435.
33. M J Martin, Nuclear Data Sheets 114 (2013) 1497.
34. C W Reich, Nuclear Data Sheets 110 (2009) 2257.
35. C W Reich, Nuclear Data Sheets 113 (2012) 2537.
36. R G Helmer, Nuclear Data Sheets 101 (2004) 325.
37. C W Reich, Nuclear Data Sheets 105 (2005) 557.