Document Type : Original Article

Authors

1 . Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎ Center for Research on Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran‎

2 Department of Physics, Faculty of Science, Tarbiat Modares University, ‎Tehran, Iran

Abstract

In this paper highly ordered TiO2 nanotube (TNT) arrays were synthesized using potentiostatic anodization of Ti foil for 12 h at voltage of 60 V and used in polymer gel-state dye senisitized solar cells (DSSCs) . To investigate the morphology and optical properties of the TNTs, scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction techniques (XRD) have been used. The average diameter and length of the TNTs were 100 nm and 30 µm, respectively. XRD and Raman measurements indicated the pure anatase phase of TNTs. A polymer poly(methyl metacrylate- co-methacrylic acid) (PMMA-MA) was mixed with a 3-methoxypropionitrile (MPN) based liquid electrolyte to prepare a gel-state polymer electrolyte. The prepared electrolytes containing varied concentrations of PMMA-MA were characterized by electrochemical impedance spectroscopy (EIS). Power conversion efficiency of NT based DSSCs using a polymer gel electrolyte containing PMMA-MA was comparable with that of the corresponding liquid counterpart.

Keywords

  1. M Urbani, M E Ragoussi, M K Nazeeruddin, and T Torres, Coord. Chem. Rev 381 (2019) 1.

  2. F Babar, U Mehmood, H Asghar, M H Mehdi, A Khan, H Khalid, N Huda, and Z Fatima, Renewable Sustainable Energy Rev. 129 (2020) 109919.

  3. P Ferdowsi, Y Saygili, F Jazaeri, T Edvinsson, J Mokhtari, S M Zakeeruddin, Y Liu, M Gratzel, and A Hagfeldt, ChemSusChem, 13 (2020) 212.

  4. S Venkatesan, I P Liu, W N Hung, H Teng, and Y L Lee, Chem. Eng. J. 367 (2019) 17.

  5. S Venkatesan, I P Liu, C W Li, C M T Shan, and Y L Lee, ACS Sustainable Chem. Eng. 7 (2019) 7403.

  6. L Tao, W Zhang, Z Wang, H Wang, J Zhang, Z Huo, S Dai, T Hayat, and N S Alharbi, Org. Electron. 65 (2019) 179.

  7. H Wang, H Li, B Xue, Z Wang, Q Meng, and L Chen, J. AM. CHEM. SOC. 127(2005) 6394.

  8. P Wang, S M Zakeeruddin, J E Moser, M K Nazeeruddin, T Sekiguchi, and M Grätzel, Nat. Mater. 2 (2003) 402.

  9. P Wang, S M Zakeeruddin, I Exnar, and M Gratzel, Chem. Commun. (2002) 2972.

  10. J N de Freitas, A F.Nogueira, and M A De Paoli, J. Mater. Chem. 19 (2009) 5279.

  11. S Venkatesan, I P Liu, J C Lin, M H Tsai, H Teng, and Y L Lee, J. Mater. Chem. A 6 (2018) 10085.

  12. S Venkatesan, I P Liu, C M T Shan, H Teng, H Teng, and Y L Lee, Chem. Eng. J. 394 (2020) 124954.

  13. H W Pang, H F Yu, Y J Huang, C T Li, and K C Ho, J. Mater. Chem. A 6 (2018) 14215.

  14. Y F Chan, C C Wang, and C Y Chen, J. Mater. Chem. A 1 (2013) 5479.

  15. D Hwang, S M Jo, D Y Kim, V Armel, D R MacFarlane, and S Y Jang, ACS Appl. Mater. Interfaces, 3 (2011) 1521.

  16. H Sun, J Deng, L Qiu, X Fang, and H Peng, Energy Environ. Sci., 8 (2015) 1139.

  17. P Chen, J Brillet, H Bala, P Wang, S M Zakeeruddin, and M Grätzel, J. Mater. Chem. 19 (2009) 5325.

  18. I C Flores, J N de Freitas, C Longo, M A De Paoli, H Winnischofer, and A F Nogueira, J. Photochem. Photobiol., A 189 (2007) 153.

  19. J B. Baxter and E S Aydil, Appl. Phys. Lett. 86 (2005) 053114.

  20. C Xu, J Wu, U V. Desai, and D Gao, Nano Lett.,12 (2012) 2420.

  21. M Asemi and M Ghanaatshoar, J. Mater. Sci. 52 (2017) 489.

  22. S H Ahn, J H Koh, J A Seo, and J H Kim. Chem. Commun. 46 (2010) 1935.

  23. P Roy, D Kim, K Lee, E Spiecker, and P Schmuki, Nanoscale 2 (2010) 45.

  24. Z Yi, Y Zeng, H Wu, X Chen, Y Fan, H Yang, Y Tang, Y Yi, J Wang, and P Wu, Results Phys. 15 (2019) 102609.

  25. H P Jen, M H Lin, L L Li, H P Wu, W K Huang, and P J Cheng, E W G Diau, ACS Appl. Mater. Interfaces 5 (2013) 10098.

  26. N Fu, X Jiang, D Chen, Y Duan, G Zhang, M Chang, Y Fang, and Y Lin, J. Power Sources 439 (2019) 227076.

  27. C C Chen, H W Chung, C H Chen, H P Lu, C M Lan, S F Chen, L Luo, C S Hung, and E W G Diau, J. Phys. Chem. C 112 (2008) 19151.

  28. T Stergiopoulos, A Ghicov, V Likodimos, D S Tsoukleris, J Kunze, P Schmuki, and P Falaras, Nanotechnology 19 (2008) 235602.

  29. Z Seidalilir, R Malekfar, H P Wu, J W Shiu, and E W G Diau, ACS Appl. Mater. Interfaces 7 (2015) 12731.

  30. Z Seidalilir, R Malekfar, J W Shiu, H P Wu, and E W G Diau, J. Electrochem. Soc. 162 (2015) H922.

  31. S Venkatesan, S C Su, S C Kao, H Teng, and Y L Lee, J. Power Sources 274 (2015) 506.

  32. C H Tsai, C Y Lu, M Chen, T W Huang, C C Wu, and Y W Chung. Org. Electron. 14 (2013) 3131.

  33. M Adachi, M Sakamoto, and J Jiu, Y Ogata, S Isoda, J. Phys. Chem. B 110 (2006) 13872.

  34. C L Chen, H Teng, and Y L Lee, J. Mater. Chem. 21 (2011) 628.

  35. Y L Lee, Y J Shen, and Y M Yang, Nanotechnology 19 (2008) 455201.

  36. V M Mohan, K Murakami, A Kono, and M Shimomura, J. Mater. Chem. A 1 (2013) 7399.‎


 


 

ارتقاء امنیت وب با وف ایرانی