Document Type : Original Article

Authors

1 Department of Applied Science, Malek‎‏ ‏Ashtar University of Technology (MUT), Shahin Shahr‎‎, Iran

2 Faculty of Mechanics, Malek‏ ‏Ashtar University of Technology (MUT), , Iran

Abstract

This paper addresses a unimorph cantilevered piezoelectric nanogenerator having high ‎output power through vibrational energy harvesting that is simulated using finite element ‎method (FEM). The simulations are done for three types of perovskite piezoelectric ‎materials including PZT, PMN-PT and MAPbI3. The interdigitated electrodes were ‎exploited‏ ‏to obtain longitudinal vibration mode using d33 mode of piezoelectric layer during ‎the bending of nanogenerator structure. The presented structure consists of a piezoelectric ‎nanolayer with gold interdigitated electrodes on it, which is placed on a flexible PET ‎polymeric substrate. To encapsulate the piezoelectric layer, an SU-8 epoxy is placed over ‎the surface. The poling process is also simulated by applying high voltage through IDs to ‎piezoelectric layer. Generally, the electric potential distribution of the piezoelectric layer ‎must be performed by applying mechanical loadings. Then the output voltage, ‎power for free vibrations and base excitation (0.25-2g) of the nanogenerator at resonance ‎frequency are investigated. The resonance frequency of the PZT, PMN-PT, and MAPbI3 were ‎calculated to be 549 Hz, 560.5 Hz and 631 Hz, respectively. We found that PZT ‎piezoelectric materials yields maximum output voltage and electrical power values of 91.69 ‎V and 350 mW which shows better performance in vibrational energy harvesting ‎application. In comparison, the results of the simulation implied a good agreement with ‎other experimental studies. The unimorph piezoelectric energy harvester system generates ‎high voltage and output power in response to sub-kilohertz ambient vibration‎.‎‎

Keywords

1-      K I Park, C K Jeong, et al., Nano Convergence 3 (2016) 1.
2-      Z Yang, S Zhou, et al., Joule 2 (2018) 642.
3-      K l Park, J H Son, et al., Advanced materials 26 (2014) 2514.
4-      M Safaei, H A Sodano, and S R Anton, Smart Materials and Structures 28 (2019) 113001.
5-      J Hao, W Li, J Zhai, and H Chen, Materials Science and Engineering: R: Reports 135 (2019) 1.
6-      A Assadi, and V S Nasrabad, IEEE transactions on nanotechnology 12 (2013) 775.
7-      V Jella, S Ippili, et al., Nano Energy 57 (2019) 74.
8-      S Nagakalyan, K L Narayana, and B R Kumar, ARPN journals 11 (2016) 9171.
9-      R Ding, H Liu, et al., Advanced Functional Materials 26 (2016) 7708.
10-  H Nikbakht, A E Shalan, et al., Energy Technology (2019) 1900728.
11-  V Jella, S Ippili, et al., Nano Energy 53 (2018) 46.
12-  M S Lee, C I Kim, et al., Energy 179 (2019) 373.
13-  M Ma, S Xia, et al., Applied Physics Letters 105 (2014) 043905.
14-  K F Wang and B L Wang, Composite Structures 153 (2016) 253.
15-  A Jemai, F Najar, et al., Composite Structures 135 (2016) 176.
16-  H Cho, J Park, and J Yeong Park, Micro and Nano Systems Letters 5 (2017) 1.
17-  Y B Jeon, et al., Sensors and Actuators A: Physical 122(2005) 16.
18-  A E Cohen and R R Kunz , Sensors and Actuators B: Chemical 62(2000) 23.
19-  E Choi, S Q Lee, et al., 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, (2010) 680.
20-  Y B Jeon, R Sood, et al., Sensors and Actuators A: Physical 122 (2005) 16.
21-  A M Alsaad, A A Ahmad, et al., Open Journal of Applied Sciences 9 (2019) 181.
22-  H Li, C Tian, and Z D Deng, Applied Physics Reviews 1 (2014) 041301.
23-  R Zhang, W Jiang, et al., In AIP conference proceedings 626 (2002) 188.
24-  S Liu, F Zheng, et al., The journal of Physical Chemistry Letters 7 (2016) 1460
25-  M S Lee, J Yun, et al., Japanese Journal of Applied Physics 56 (2017) 127101

تحت نظارت وف ایرانی