Document Type : Original Article

Authors

Superconductivity Research Center, Department of Physics, Faculty of Science, Urmia University, Urmia, Iran

Abstract

: We have investigated the effect of Niobium and Nano CuO (40 nm) dopingY1-xNbxBa2Cu3O7-∂ compounds with 0.00 ≤ x ≤ 0.05 wt. %, prepared by the conventional solid-state method by means of XRD, SEM, R(T) and magnetic loops (M-H) measurements. The critical current densities, Jc as a function of temperature have been calculated using the critical state model from the hysteresis loops up to 1 kG at the temperature range of 10-60 K. Magnetic flux pinning, Fp of samples was calculated by using Lorentz force. The temperature dependence of the electrical resistivity measurement curves indicated that the sample with x=0.01 wt.% has a high transition temperature, Tc. XRD analysis shows a shorter c axis lattice parameter and higher orthoromthcity than the pure Y-123 and other Nb-doped samples. It was also found from Jc and Fp measurement, that the 0.01 wt.% Nb substation for the Y on YBCO superconductor improves the Jc and Fp.

Keywords

  1. S Sathyamurthy, A Parikh, and K Salama, Processing of polycrystalline HTCS, for high current transport applications, Physica C 271 (1996) 349. https://doi.org/10.1016/S0921-4534(96)00553-9.

  2. M Murakami, electromagnetic applications of melt-processed YBCO, Ceramics 23 (1997) 203. https://doi.org/10.1016/S0272-8842(96)00026-0.

  3. K Nakazatoa, M Muralidhara, M R Koblischkaab, and M Murakamia, Fabrication of bulk Y–Ba–Cu–O superconductors with high critical current densities through the infiltration-growth process, Solid State Commun 63 (2014) 129. https://doi.org/10.1016/j.cryogenics.2014.04.003.

  4. M Tepe, I Avci, H Kocoglu, and D Abukay, Investigation of the variation in weak-link profile of YBa2Cu3−xAgxO7−δ superconductors by Ag doping concentration, Solid State Commun 131 (2004) 319. https://doi.org/10.1016/j.ssc.2004.05.015.

  5. A Yıldız, K Kocabaş, and G Akyüz, Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7−δ Bulk Superconductor on the Ag Doping J Supercond and Nov Magn. 25 (2012) 1459. https://doi.org/10.1007/s10948-012-1482-8.

  6. R J Cava, B Batlogg, C H Chen, E A Reitman, S M Zahurak and D werder, Single-phase 60-K bulk superconductor in annealed YBa2Cu3O7δ (0.3<δ<0.4) with correlated oxygen vacancies in the Cu-O chains, Phys. Rev. B 36 (1987) 5714. https://doi.org/10.1103/PhysRevB.36.5719.

  7. L Jansen, R B lock, Effect of iodine intercalation on superconductivity in the high-TC series Bi2Sr2CaN−1CuNO2N+4+δ, N=1–3, and in the yttrium doped N=2 compound. A quantitative analysis on the basis of indirect exchange pairing, A 277 (2000) 183. https://doi.org/10.1016/0378-4371(93)90240-5.

  8. S Nakajima, M Kikachi, Y Syono, T OKO, D Shindo, K Hiraga, N Kobayashi, H Iwasaki, Y Muto, Synthesis of bulk high Tc superconductors of TlBa2Can −1CunO2n + 3 (n = 2 − 5), Physica, C 158 (1989) 471. https://doi.org/10.1016/0921.4534(89)90246-3.

  9. S Dadras and M Ghavamipour, Investigation of the properties of carbon-base nanostructures doped YBa2Cu3O7−δ high temperature superconductor, Physica B 484 (2016) 13-17. https://doi.org/10.1016/j.physb.2015.12.025.

  10. S Dadras, Y Liu, Y S Chai, V Daadmehr, K H Kim, Increase of critical current density with doping carbon nano-tubes in YBa2Cu3O7−δ, Physica C 469 (2009) 55. https://doi.org/10.1016/j.physc.2008.11.004.

  11. M N Hasan, M Kiuchi, E S Otabe, T Matsuhita, M Muralidhar, Flux pinning properties of (Nd, Eu, Gd) Ba2Cu3Oy (NEG-123) superconductor with 211 phase particles Supercond, Sci. Technol 20 (2007) 345. https://doi.org/10.1088/0953-2048/20/4/008.

  12. A Mellekh, M Zouaoui, F B Azzouz, M Annabi, and M B Salem, Nano- Al2O3 particle addition effects on Y Ba2Cu3Oy superconducting properties Solid State Commun. 140 (2016) 318. https://doi.org/10.1016/j.ssc.2006.08.008.


13. C Xu, A. Hu, M Ichihara, N Sakai, I Hirabayashi, and M Izumi, Physica C, Enhanced flux pinning of air-processed Gd123 by doping ZrO2 nanoparticles 460 (2007) 1341. https://doi.org/10.1016/j.physc.2007.04.168.



  1. A K Jha and N Khare, Strongly, enhanced pinning force density in YBCO–BaTiO3 nanocomposite superconductor, Physica C 469 (2009) 810. https://doi.org/10.1016/j.physc.2009.05.008.

  2. T Wolf, I Apfelstedt, W Goldcker, H Küpfer, and R Flükiger, Preparation and characterization of isotropic and textured YBa2Cu3O7−x with high density and low residual resistivity, Physica C 351 (1988) 153. https://doi.org/10.1016/0921-4534(88)90628-4.

  3. R M Hazen, L W Finger, R J Angel, C T Perwitt, N L Ross, H K Mao, C G Hadidiacos, P H Hor, R L. Meng, and C W Chu, Crystallographic description of phases in the Y-Ba-Cu-O superconductor, Phys. Rev. 335 (1987) 7238. https://doi.org/10.1103/PhysRevB.35.7238.

  4. M B Turkoz, S Nezir, C Terzioglu, A Varilci, and G Yildirim, Investigation of Lu effect on YBa2Cu3O7-σ superconducting, compounds J Mater Sci. Mater Electron 24 (2013) 896. https://doi.org/1007/s10854-012-0846-y.

  5. M R Presland, J L Tallon, R G Buckley, R S Liu, and N E Flower, General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors, Physica C 176 (1991) 95. https://doi.org/10.1016/0921-4534(91)90700-9.

  6. S D Obertelli, J R Cooper, and J L Tallon, Systematics in the thermoelectric power of High-Tc oxides, Phys. Rev. B 46 (22) (1992) 14928. https://doi.org/10.1103/PhysRevB.46.14928.

  7. J C Chen, Y Xu, M K Wu, and W Guan.: Ion-Size Effect on Normal-State Transport Properties in R8Pr0.2Ba2Cu3O7−y Systems (R = Yb, Er, Dy, Gd, Eu, and Nd). Physical Review B, 53 (1996) 5839. http://dx.doi.org/10.1103/PhysRevB.53.5839.

  8. A Öztürka, İ Düzgünb, S çlebi.: The effect of partial Lu doping on magnetic behaviour of YBCO (123) superconductors, J. Alloys and compound. 495 (2010) 104. https://doi.org/10.1016/j.jallcom.2010.01.095.

  9. C P Bean, Magnetization of Hard Superconductors, Rev. let. 8, (1962) 250. https://doi.org/10.1103/PhysRevLett.8.250.

  10. W C Chan, C H Chiang, and Y J Hsu, Direct Lorentz force measurement for YBa2Cu3O7–δ superconductor, Cryogenics 50 (2010) 292. https://doi.org/10.1016/j.cryogenics.2010.01.002.

  11. B A Malik, M A Malik, and K Asokan, Enhancement of the critical current density in YBCO/Ag composites, Chinese Journal of the physics 55 (2017) 170. https://doi.org/10.1016/j.cjph.2016.10.015.

  12. H Huhtinen, V P S Awana, A Gupta, H Kishan, R Laiho and A V Narlikar: Pinning centres and enhancement of critical current density in YBCO doped with Pr, Ca and Ni, Supercond. Sci. Technol. 20 (2007) 159. https://doi:10.1088/0953-2048/20/9/S08.

  13. B A Malik, M A Malik, and K Asokan, Magneto transport study of YBCO: Ag composites, Current Applied Physics 16 (2016) 1270 -1276. https://doi.org/10.1016/j.cap.2016.07.004.


 


 

تحت نظارت وف ایرانی