Document Type : Original Article

Authors

1 Faculty of Physics, Yazd University, Yazd, Iran

2 Faculty of Materials, Isfahan University of Technology, Isfahan, Iran

3 Faculty of Physics, Isfahan University of Technology, Isfahan, Iran

Abstract

In this paper, the NixMg1-x O (0.1 ≤ x ≤ 0.4) solid solution nano-powder was synthesized by new and soft non-alkoxide sol-gel self-combustion method. In this method, Ni(NO3)3·6H2O, Mg(CH3COO)2·4H2O and Citric acid (CA), were used as Ni2+, Mg2+ ion and gelling and combusting source, respectively. Then, by thermal gravimetric analysis (TGA) the chemical reaction and the appropriate temperature to form a stable compound were determined. The influences of molar ratio of component (x) on structural and optical properties of samples have been investigated by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and Fourier transform infrared (FTIR) analysis. By increasing in x, all the samples are shown decreasing ecreasing in lattice parameter (a) and crystallite size (D), which indicates the contamination of magnesium oxide with nickel and the formation of NixMg1-xO solid solution. The Band gap was decreased by increasing in x which shows that Ni2+ ions in MgO structure causes some modifications in the energy levels and the optical absorbance characteristics associated with F centers due to oxygen defect centers.

Keywords

  1. D Sumanth Kumar, et al., “Synthesis of Inorganic Nanomaterials”, Woodhead Publishing (2018).

  2. M A Virji, et al., “Comprehensive Materials Processing”, Elsevier, Oxford, (2014.

  3. S T Aruna and A S Mukasyan, Current Opinion in Solid State and Materials Science 12 (2008) 44.

  4. J Azadmanjiri, et al., Materials Letters 61 (2007) 84.

  5. A Sutka, et al., Physica Scripta 83 (2011) 025601.

  6. W Chen, “Doped Nanomaterials and Nanodevices”, American Scientific Publishers 3 (2010).

  7. R N Bhargava, USA Patent US5446286A (1994).

  8. J McCloy, et al., “Infrared-Transmitting Glass-Ceramics: A Review”, 8708 (2013).

  9. A C F M Costa, et al., Journal of Alloys and Compounds 495 (2010) 503.

  10. C- C Hwang, J- S Tsai and T- H Huang, Materials Chemistry and Physics 93 (2005) 330.

  11. A C F M Costa, et al., Journal of Alloys and Compounds 483 (2009) 37.

  12. C- C Hwang, et al., Materials Science and Engineering B 111 (2004) 49.

  13. K H Wu, et al., Materials Science and Engineering B 123 (2005) 227.

  14. P Hu, et al., Journal of Magnetism and Magnetic Materials 323 (2011) 569.

  15. O Madelung, U Rössler, and M Schulz “NiO: lattice parameter, thermal expansion: Datasheet from Landolt-Börnstein - Group III Condensed Matter”, Springer-Verlag Berlin Heidelberg, 41D (1999).

  16. O Madelung, U Rössler, and M Schulz, “Magnesium oxide (MgO) crystal structure, lattice parameters, thermal expansion”, Springer Berlin Heidelberg, Berlin, Heidelberg, 32A (1999).

  17. L G Ferguson, F Dogan, Materials Science and Engineering: B 83 (2001) 35.

  18. R J Powell, W E Spicer, Physical Review B 2 (1970) 2182.

  19. I V Abarenkov, I M Antonova, physica status solidi (b) 92 (1979) 389.

  20. Y Guo, et al., Thin Solid Films, 558 (2014) 311.

  21. T Liu, R Stokes and C Li, Journal of the American Ceramic Society 47 (2006) 276

  22. R Kumar, et al., AIP Conference Proceedings, 1728 (2016).

  23. M Jafarbegloo, et al, Catalysis Letters 146 (2016) 238.

  24. Y Zhang, et al., Materials Science-Poland 28 (2010) 21.

  25. Y Hu, Catalysis Today 148 (2009) 206.

  26. Z Ji, et al., Journal of Crystal Growth 273 (2005) 446.

  27. J W Mares, et al., Proceedings of SPIE - The International Society for Optical Engineering, 7603 (2010).

  28. M Jafarbegloo, et al, Journal of Natural Gas Science and Engineering 27 (2015) 1165.

  29. N Budiredla, et al., ISRN Nanomaterials 2012 (2012) 865373.

  30. R Zanganeh, M Rezaei and A Zamaniyan, Advanced Powder Technology 25 (2014) 1111.

  31. J Deng, et al., Journal of Applied Physics 112 (2012) 123703.

  32. C Kittel, “Introduction of solid state physics”, Wiley Eastern Ltd, New Delhi (1979).

  33. W A Weyl, Journal of Applied Physics 17 (1946).

  34. G L Roberts and F H Field, Journal of the American Chemical Society, 72 (1950).

  35. F Kröger, H Vink and J Boomgaard, Physica, 18 (1952) 77.

  36. J I Pankove, “Optical Processes in Semiconductors”, Dover Publications Inc., New York, DOI (1971).

  37. A L Companion, “Theory and Applications of Diffuse Reflectance Spectroscopy”, Springer US, Boston, MA, DOI (1965).

  38. M V Iverson, J C Windscheif, and W A Sibley, Applied Physics Letters 36 (1980) 183.

  39. R C Boutwell, et al., Thin Solid Films, 520 (2012) 4302.

  40. N Hiroki, et al, Applied Physics Express 8 (2015) 105801.

  41. C A Niedermeier, et al., Scientific Reports 6 (2016) 31230.

  42. W J Tropf, M E Thomas and T J Harris, “Optical and physical properties of materials”, McGraw-Hill , INC., New York, 2 (1995).

  43. F Gu, et al., Journal of Crystal Growth, 260 (2004) 507.

  44. J L G P V Sushko and A L Shluger, Phys. Chem.B 106 (2002) 2269.

  45. L Ojamäe and C Pisani, The Journal of Chemical Physics 109 (1998) 10984.

  46. D Ricci, et al., The Journal of Chemical Physics, 117 (2002) 2844.

  47. H- M Benia, et al., Physical Review B 81 (2010) 241415.

  48. G H Rosenblatt, et al., Physical Review B, 39 (1989) 10309.

  49. A Kumar, et al, Journal of Luminescence, 131 (2011) 640.

  50. K Uchino and S Nomura, Ferroelectrics, 17 (1978) 505.

  51. A Kumar, et al., Research Journal of Chemical Sciences, 5 (2015) 1.

  52. O Deutschbein, Annalen der Physik, 406 (1932) 712.

  53. G Huber, et al., Journal of Luminescence, 39 (1988) 259.

  54. S P S Porto, D L Wood, Applied Optics, 1 (1962) 139.

  55. A M C M Boubeta, et al., Solid State Commun. 151 (2011)

ارتقاء امنیت وب با وف ایرانی