Document Type : Original Article
Authors
1 Physics department, Sharif university of technology, Tehran, Iran
2 department of Physics, faculty of science, Hakim Sabzevari University
3 Department of Physics, Faculty of science, Hakim Sabzevari University, P. O. Box 961797648, Sabzevar, Islamic Republic of Iran
4 Faculty member/ Physics Dept. Sharif University of Technology
Abstract
BiVO4 thin films with thickness of ~ 1.3 μm were deposited on ITO substrate via pulsed-spray pyrolysis deposition. X-ray diffraction pattern revealed that BiVO4 layers have been crystallized in tetragonal scheelite phase with average crystallite size of ~ 16 nm. According to UV-visible absorption spectra, a band gap energy of ~2.47 eV was determined for the synthesized layers. Scanning electron microscopy observations indicated that a porous BiVO4 structure with average pore diameter of ~ 162 nm and worm-like fine particle diameter of ~ 208 nm has been synthesized. Oxygen vacancies have been induced into the layers via an electrochemical reduction treatment (ET). This employed process increased the surface-related capacitance by about 6 times. A double charge transport resistance and half capacitance for Helmholtz layer was determined after ET, indicating electron transfer from space charge layer to Helmholtz layer upon ET. Using electrochemical impedance spectroscopy, it was found that effective charge carrier life time inside the BiVO4 thin films increased to ~25 ms which is 2-fold longer than the time before electrochemical reduction treatment.
Keywords
Main Subjects
- M Tahir, S Tasleem, and B Tahir, J. Hydrog. Energy 45, 32 (2020) 15985.
- M Faraji, et al., Energy Environ. Sci. 12, 1 (2019) 59.
- A Naseri, et al., J. Phys. Res.20, 2 (2020) 273.
- A Arabkhorasani, E Saievar Iranizad, and A Bayat, J. Phys. Res. 21, 2 (2021).
- A Fujishima and K Honda, Nature 238, 5358 (1972) 37.
- M Samadi, et al., Thin Solid Films 605 (2016) 2.
- G W Zheng, et al., Mater. Chem. A 7, 45 (2019) 26077.
- M Zirak, et al., Energy Mater Sol. Cells 141 (2015) 260.
- A Naseri, et al., Mater. Chem. A 5, 45 (2017) 23406.
- M Zirak, H Alehdaghi, and A Moshfegh, J. Phys. Res. 19, 2 (2019) 365.
- A Kudo, et al., Lett 53, 3 (1998) 229.
- K Sayama, et al., Comm. 23 (2003) 2908.
- J H Kim and J S Lee, Mater 31, 20 (2019) 1806938.
- F F Abdi, N Firet, and R van de Krol, ChemCatChem 5, 2 (2013) 490.
- F F Abdi and R van de Krol, Phys. Chem. C 116, 17 (2012) 9398.
- R Kumar, et al., Clean. Prod. 297 (2021) 126617.
- M Mousavi Kamazani, Alloys Compd. 823 (2020) 153786.
- N Omrani and A Nezamzadeh Ejhieh, J. Hydrog. Energy 45, 38 (2020) 19144.
- N Omrani and A Nezamzadeh Ejhieh, Photochem. Photobiol. A: Chem. 400 (2020) 112726.
- S Fakhravar, M Farhadian, and S Tangestaninejad, Environ. Chem. Eng. 8, 5 (2020) 104136.
- R Razi and S Sheibani, Intl. 47, 21 (2021) 29795.
- N Jafari, et al., Toxin Rev. (2021) 1.
- A Yousefi, A Nezamzadeh Ejhieh, and M Mirmohammadi, Technol. Innov. 22 (2021) 101433.
- A Dehdar, et al., Environ. Manage. 297 (2021) 113338.
- M Batool, et al., Nano-Struct. Nano-Objects 27 (2021) 100762.
- A Qayum, et al., Mater. Chem. A 8, 21 (2020) 10989.
- F F Abdi, et al., Commun. 4, 1 (2013) 1.
- K Sayama, et al., Lett. 39, 1 (2010) 17.
- K P S Parmar, et al., ChemSus Chem. 5, 10 (2012) 1926.
- K Sayama, et al., Phys. Chem. B 110, 23 (2006) 11352.
- D K Zhong, S Choi, and D R Gamelin, Am. Chem. Soc. 133, 45 (2011) 18370.
- S K Pilli, et al., Energy Environ. Sci. 4, 12 (2011) 5028.
- A Galembeck and O Alves, Mater. Sci. 37, 10 (2002) 1923.
- M M Momeni and Z Tahmasebi, Chem. Commun. 125 (2021) 108445.
- M Kölbach, et al., Phys. Chem. C 124, 8 (2020) 4438.
- M Chahkandi and M Zargazi, Hazard. Mater. 389 (2020) 121850.
- M Tayebi and B K Lee, Sust. Energ. Rev. 111(2019) 332.
- Y Zhang, et al., Surf. Sci. 403 (2017) 389.
- F S Hegner, et al., Phys. Chem. Lett. 10, 21 (2019) 6672.
- Y Zhang, et al., Acta. 195 (2016) 51.
- S M Esfandfard, et al., J. Phys. Res. 19, 1 (2019) 19.
- S C Wang, et al., Chem. Int.Ed. 56, 29 (2017) 8500.
- G Wang, et al., Mater. Chem. A 4, 8 (2016) 2849.
- A Qayum, et al., Mater. Chem.A 8, 21 (2020) 10989.
- Y Bu, et al., Mater. Interfaces 4, 10 (2017) 1601235.
- S Wang, et al., Chem. 129, 29 (2017) 8620.
- W Luo, et al., Phys. Chem. C 116, 8 (2012) 5076.
- N O sterbacka and J Wiktor, Phys. Chem. C 125, 2 (2021) 1200.
- S Tokunaga, H Kato, and A Kudo, Mater. 13, 12 (2001) 4624.
- J Mariathasan, R Hazen, and L Finger, Phase Transit. 6, 3 (1986) 165.
- N F Mott and E A Davis, “Electronic processes in non-crystalline materials,” Oxford university press (2012).
- J Tauc, R Grigorovici, and A Vancu, Status Solidi B 15, 2 (1966) 627.
- J K Cooper, et al., Phys. Chem. C 119, 6 (2015) 2969.
- M Rohloff, et al., Energy Fuel. 1, 8 (2017) 1830.
- W Luo, et al., Energy Environ. Sci. 4, 10 (2011) 4046.
- F F Abdi, et al., Phys. Chem. Lett. 4, 16 (2013) 2752.
- D Halliday, R Resnick, and J Walker, “Fundamentals of physics” John Wiley & Sons (2013).
- Y Choi, et al., Mater. Chem.A 9 (2021) 13874.
- A J Rettie, et al., Am. Chem. Soc. 135, 30 (2013) 11389.
- J A Seabold, K Zhu, and N R Neale, Chem. Chem. Phys. 16, 3 (2014) 1121.
- H Seo, Y Ping, and G Galli, Mater. 30, 21 (2018) 7793.
- Y Zhang, et al., Chem. Chem. Phys. 16, 44 (2014) 24519.
- X Zhao, et al., ACS Energy Mater. 1, 7 (2018) 3410.
- S Wang, et al., Mater. 30, 20 (2018) 1800486.
- J H Kim, et al., Commun. 7, 1 (2016) 1.
- T W Kim, et al., Commun. 6, 1 (2015) 1.
- J W Jang, et al., Energy Mater. 7, 22 (2017) 1701536.
- G Wang, et al., Phys. Chem. C 117, 21 (2013) 10957.
- J K Cooper, et al., Mater. 28, 16 (2016) 5761.
- A P Singh, et al., J. Hydrog. Energy 40, 12 (2015) 4311.
- T W Kim and K S Choi, Science 343, 6174 (2014) 990.
- X Ning, et al., Chem. Int. Ed. 58, 47 (2019) 16800.
- R Kern, et al., Acta 47, 26 (2002) 4213.
- M Zhou, et al., ACS Nano 8, 7 (2014) 7088.
- D Tafalla, P Salvador, and R Benito, Electrochem. Soc 137 (1990)1910.
- S Bae, et al., ACS Appl. Mater. Interfaces 11, 8 (2019) 7990.