Document Type : Original Article

Authors

1 Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

3 1Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

In this paper, two structures of surface plasmon resonance fiber optic biosensors with the addition of a thin layer of titanium dioxide and barium titanate are introduced and studied comparatively. The sensitivity of these biosensors has been calculated using the transfer matrix method. Adding a thin layer of barium titanate and titanium dioxide after the gold layer, both make increase the sensitivity of the biosensor due to the transfer of free charge between the gold and the dielectric. The obtained results of the comparative study show that the titanium dioxide layer can be a suitable alternative to barium titanate for further increase of the sensitivity of the fiber optic surface plasmon resonance biosensor.

Keywords

Main Subjects

  1. F Esmaili Seraji, M Ghanbarisabagh, and D Ranjbar Rafi, Iranian Journal of Physics Research 19, 4 (2020) 659.
  2. M Holzinger, A Le Goff, and S Cosnier, Frontiers in Chemistry 2 (2014) 63.
  3. A B Socorro Leránoz, et al., Biosensors Bioelectronics: X 1 (2019) 100015.
  4. R Chauhan, et al., Sensors 222 (2016) 804.
  5. Z k Farka, et al., Chemical Reviews 117, 15 (2017) 9973.
  6. R Kumar, et al., Applied Physics A 124, 3 (2018) 1.
  7. M S Rahman et al., Photonics and Nanostructures Fundamentals and Applications 33 (2019) 29.
  8. M S Rahman, et al., Optics Communications 396 (2017) 36.
  9. A S Kushwaha, et al., Photonics and Nanostructures Fundamentals and Applications 31 (2018) 99.
  10. Q Wang, et al., Optics Laser Technology 124 (2020) 105899.
  11. V Kapoor, N K Sharma, and O T Letters, Microwave 62, 7 (2020) 2439.
  12. N Cennamo, et al., Sensors 11, 12 (2011) 11752.
  13. J Zhao, et al., Sensors Actuators B: Chemical 230 (2016) 206.
  14. L-Y Niu, et al., Optics Communications 450 (2019) 287.
  15. Y Al Qazwini, et al., Photonic Sensors 4, 4 (2014) 289.
  16. N K Sharma, Pramana 78, 3 (2012) 417.
  17. V T Hoang, et al., Applied Sciences 9, 6 (2019) 1145.
  18. A K Mishra, S K Mishra, and R K Verma, The Journal of Physical Chemistry C 120, 5 (2016) 2893.
  19. A K Sharma and B Gupta, Optics Communications 274, 2 (2007) 320.
  20. S Wemple, M Didomenico Jr, and I Camlibel, Journal of Physics and Chemistry of Solids 29, 10 (1968) 1797.
  21. S Singh and B Gupta, Measurement Science Technology 21, 11 (2010) 115202.
  22. B D Gupta, “Fiber optic sensors: principles and applications” New India Publishing (2006).
  23. B D Gupta, R Verma, and S K Srivastava, “Fiber optic sensors based on plasmonics” World Scientific (2015).
  24. A E Wammes, et al., Lab on a Chip 13, 10 (2013) 1863.
  25. B Gupta and A K Sharma, Sensors Actuators B: Chemical 107, 1 (2005) 40.
  26. A Berkhout and A F Koenderink, Nanophotonics 9, 12 (2020) 3985.
  27. G Marino, et al., Nanophotonics 10, 7 (2021) 1837.
  28. Q Ouyang, et al., Scientific Reports 6, 1 (2016) 1.
  29. L Han and C Wu, Plasmonics 14, 4 (2019) 901.
  30. A K Sharma and B Gupta, Journal of Applied Physics 101, 9 (2007) 093111.
  31. A Vahedi and M Kouhi, Optik (2021) 167383.
  32. M Moznuzzaman, et al., Results in Physics 16 (2020) 102874.
  33. Y Feng, Y Liu, and J Teng, Applied Optics 57, 14 (2018) 3639.
  34. A Vahedi and M Kouhi, Plasmonics 15, 1 (2020) 61.
  35. Y Liu and W Peng, Journal of Lightwave Technology 39, 12 (2021) 3781.
  36. P Bhatia and B D Gupta, Applied Optics 50, 14 (2011) 2032.
  37. L Tao, et al., Sensors 20, 5 (2020) 1505.

ارتقاء امنیت وب با وف ایرانی