Document Type : Original Article
Authors
1 Department of Nuclear Physics, Faculty of Physics, University of Payame Noor, Tehran, Iran
2 Department of Nuclear Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran
Abstract
In this paper, the statistical properties of 1- to 7- negative parity levels in the 170Tm nucleus are considered with emphasis on the nearest neighbor spacing distribution in the framework of random matrix theory. The latest available experimental data for different negative parity energy levels in the E≤ 3000 keV region are used to classifiy in different sequences and are analysed. The Berry – Robnik distribution function and the least square extraction method have been used to determine the parameter of distribution function in considered sequences. The results
show the adaptation of the statistical behavior of all considered negative parity levels with the Wigner distribution function and therefore, the statistical correlation of such levels. Also, the strong correlations are yield for the sequences prepared by levels with odd spin values while the 2- levels show a weak correlation and a Poisson-like behavior. The dependence of the statistical behavior of the negative parity levels to the energy was investigated which suggests the maximum correlation in the 1300 <E < 2100 keV energy region.
Keywords
Main Subjects
- C A Tracy and H Widom, “Introduction to random matrices, Geometric and quantum aspects of integrable systems, “ Springer, Berlin, Heidelberg (1993).
- F J Wegner, Phys. Rev. B 19 (1979) 783.
- H Weidenmüller and G Mitchell, Rev. Mod. Phys. 81 (2009) 539.
- T A Brody, et al, Rev. Mod. Phys. 53 (1981) 385.
- M V Berry and M Robnik, Phys. A: Math. Gen. 17 (1984) 2413.
- T Von Egidy, H Schmidt, and A Behkami, Phys. A 481 (1988) 189.
- R A Molina, Eur. Phys. J. A Hadrons and Nuclei 28 (2006) 125.
- A J Majarshin, et al., Annal. Phys. 407 (2019) 250.
- M L Mehta,“ Random Matrices“, Elsevier )2004).
- M Jafarizadeh, et al., Nucl. Phys. A 890 (2012) 29.
- Y Liu, Proceedings of the Mathematical Junior Seminar, Princeton University (2000).
- J H Winters, J Salz, and R D Gitlin, IEEE Trans. Comm. 42 (1994) 1740.
- A Al Sayed, Stat. Mech. Theory Exp. 2009 (2009) 02.
- A Al Sayed and A Abul Magd, Phys. Rev. C 74 (2006) 037301.
- National Nuclear Data Center (Brookhaven National laboratory), chart of nuclides. (http://www.nndc.bnl.gov/chart/reColor.jsp?newColor=dm
- T Khatoni and H Sabri, Lett. B 823 (2021) 136780.
- H Sabri, et al., Random Matrices-Theo .3 (2014) 1450017.
- P Möller, et al., arXiv preprint nucl-th/9308022 (1993).
- H Sabri, et all., Eur. Phys. J. Plus 129 (2014) 1.
- H Sabri, Eur. Phys. J. Plus 129 (2014) 124.
- A Abul Magd, J. Phys. A Math. Gen. 29 (1996) 1.
- D Mulhall, Rev. C 83 (2011) 054321.
- M Macek, J Dobes, and P Cejnar, Rev. C 80 (2009) 014319.