نوع مقاله : مقاله مروری

نویسندگان

1 گروه علوم مواد، دانشکده علوم، دانشگاه بیسکرا، الجزایر

2 گروه فیزیک، دانشکده علوم ماده، دانشگاه تیارت، الجزایر آزمایشگاه میکرو و نانوفیزیک (LaMiN)، دانشکده ملی پلی‌تکنیک اوران (ENPO)، اوران، الجزایر

3 گروه زیست شناسی، دانشکده علوم، دانشگاه حمه لخضر، الوادی، الجزایر

چکیده

مقاله حاضر تأثیر دمای بستر را بر ویژگی‌های فیزیکی لایه‌های نازک اکسید روی (ZnO) رسوب‌شده با استفاده از روش افشانه پیرولیز گزارش می‌کند. این لایه‌ها ماهیتی بس‌بلوری با جهت‌گیری ترجیحی در امتداد [002] نشان می‌دهند. علاوه بر این، اندازۀ متوسط بلورک‌ها‌ با افزایش دمای بستر افزایش می‌یابد. نتایج میکروسکوپ الکترونی روبشی نشان داد که لایه‌ها به طور یکنواخت و همگن توزیع شده‌اند. میانگین عبور اپتیکی، بسته به دمای بستر، بین 62 تا 90 درصد متغیر است. از طرف دیگر، با افزایش دمای بستر، ضریب جذب کاهش می‌یابد و گاف نواری اپتیکی در محدودۀ 3٫25 – 3٫28 الکترون‌ولت تغییر می‌کند. رسانش الکتریکی لایه‌ّها نیز بین (mS.cm-1) 18 تا 58 متغیر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of substrate temperature on the structural, optical, electrical, and morphological properties of zinc oxide thin films

نویسندگان [English]

  • Dif Souad 1
  • Said Benramache 1
  • Abdelfateh Ammari 2
  • Abdelouahab Gahtar 3

1 Department of Materials Sciences, Faculty of Sciences, University of Biskra, Algeria.

2 Department of Physics, Faculty of Matter Sciences, University of Tiaret, Algeria Laboratory of Micro and Nanophysics (LaMiN), National Polytechnic School of Oran (ENPO), Oran, Algeria

3 Department of Biology, Faculty of Sciences, University of Hamma Lakhdar, El Oued, Algeria

چکیده [English]

The present paper reports on the effect of substrate temperature on the physical properties of zinc oxide (ZnO) thin films deposited using spray-pyrolysis technique. The films exhibit a polycrystalline nature with a preferred orientation along [002]. Furthermore, the average crystallites size increases with increasing the substrate temperature. The scanning electron microscopy results showed that the films were evenly distributed and homogeneous. The average optical transmittance varies in the range of 62 to 90% depending on the substrate temperature. On the other hand, with increasing the substrate temperature, the absorption coefficient decreases and the optical band gap varies in the range of 3.25 - 3.28 eV. The electrical conductivity of films varies between 18 and 58 mS.cm-1.

کلیدواژه‌ها [English]

  • ZnO thin films
  • substrate temperature
  • spray-pyrolysis
  • morphology
  • optical band gap
  • electrical conductivity
  1. P E Agbo and M N Nnabuchi, Chalcogenide Lett. 8 (2011) 273.
  2. F Atay, et al., J. Phys. 27 (2003) 285.
  3. Z B Bahşi and A Y Oral, Mater. 29 (2007) 672.
  4. M Baradaran, et al., Alloys Compd. 788 (2019) 289.
  5. S Benramache, et al., Semicond. 34 (2013) 113001.
  6. R Boughalmi, et al., Sci. Semicond. Process. 26 (2014) 593.
  7. R Boughalmi, et al., Chem. Physic. 163 (2015) 99.
  8. A Boukhachem, et al., Actuators A: Phys. 253 (2017) 198.
  9. S H Cho, Electr. Electron. Mater. 10 (2009) 185.
  10. B D Cullity, “Elements of X-ray Diffraction”, Addison-Wesley Publishing, (1956).
  11. A Gahtar, et al., Mater. Sci. 20 (2020) 36.
  12. A Gahtar, et al., Chalcogenide Lett. 19 (2022) 103.
  13. A Gahtar, et al., Nano-Metal Chem. 52 (2022) 112.
  14. A Goktas, et al., Alloys Compd. 893 (2022) 162334.
  15. A Hafdallah, et al., Alloys Compod. 509 (2011) 7267.
  16. Y Huang, et al., Mater. Chem. C 8(2020) 12240.
  17. M R Islam, et al., Interfaces 16 (2019) 120.
  18. A Jiamprasertboon, et al., ACS Appl. Electro. Mater. 1 (2019), 1408.
  19. R Karthikeyan, Doctoral Dissertation Thesis, Shizuoka University (2015).
  20. L H Kathwate, et al., Actuator. A: Phys. 313 (2020) 112193.
  21. H A Kavak, et al., Vacuum 83, 3 (2008) 540.
  22. Z N Kayani, F Saleemi, and I Batool, Phys. A 119 (2015) 713.
  23. F Khan, W Khan, and S D Kim, Nanomaterials 9, 3 (2019) 440.
  24. V Kumar, et al., Phys. B: Condens. Matter 552 (2019) 221.
  25. Y Lu, et al., Inter. J. Appl. Ceram. Techno. 17, 2 (2020) 722.
  26. S Marouf, et al., Mater. Res. 20 (2016) 88.
  27. N Marsi, et al., Inter. J. Nanoelectronics. Mater. 13 (2020) 113.
  28. P Godse, et al., J. Surf. Eng. Mater. and Adv. Technol. 1, 02 (2011) 35.
  29. P Prepelita, et al., Appl. Surf. Sci. 256, 6 (2010) 1807.
  30. A Rahal, S Benramache, and B Benhaoua, J. 18, 2 (2014) 81.
  31. M Riahi, et al., Thin Solid Films 626 (2017) 9.
  32. V Sallet, et al., Nanotechnology 31, 38 (2020) 385601.
  33. T Shen, et al., Appl. Phys. Lett. 120, 4 (2022) 042105.
  34. S S Shinde, et al., Appl. Surf. Sci. 258 (2012) 9969.
  35. D T Speaks, J. Mech. Mater. Eng. 15 (2020) 1.
  36. D Vernardou, et al., J. Crys. Growth 308 (2007) 105.
  37. W Yang, et al., Ceram. Int. 46, 5 (2020), 6605.
  38. Z Zhang, et al., Superlattices and Microstruct. 49, 6 (2011) 644.



 

 

ارتقاء امنیت وب با وف ایرانی