Document Type : Original Article

Author

Faculty of Physics, University of Isfahan, Isfahan 81746-73441, Iran

Abstract

Laser beams carrying orbital angular momentum have found numerous applications in various branches of sciences especially in modern quantum communications. Frequency conversion of these beams using nonlinear crystals allows the desired spectral ranges to be achieved. In this work, first, the optimal value of the focusing parameter and the location of the focus of the pump beam with orbital angular momentum in second harmonic generation process are determined. Then, based on the dependence of the optimal value of the phase mismatch parameter on the Laguerre-Gaussian mode order contained in the pump beam, a novel method for varying of the orbital angular momentum of the generated second harmonic beam is presented. According to this method, for pump beams with fractional orbital angular momentum, by changing the focusing parameter, the angular momentum of the second harmonic generation beam can be continuously tuned.

Keywords

Main Subjects

  1. G Molina Terriza, J P Torres, and L Torner, Nature Physics 3 (2007) 305.
  2. G Milione, et al., Optics Letters 40 (2015) 4887.
  3. Z Shen, et al., Applied Physics Letters 109 (2016) 241901.
  4. C E R Souza and A Z Khoury, International Conference on Quantum Information,Optical Society of America, Ottawa (2011).
  5. V Sharma, et al., Optics Letters 46 (2021) 3235.
  6. J B Götte, et al., Optics Express 16 (2008) 993.
  7. M Mohagheghian and S Ghavami Sabouri, Optics Express 30 (2022) 9494.
  8. A E Willner, et al., Applied Physics Review 8 (2021) 041312.
  9. V Sharif and H Pakarzadeh, Journal of Lightwave Technology 39 (2021) 4462.
  10. Y Yuan, et al., Optics Communications 505 (2022) 127502.
  11. L W Mao, et al., Journal of Optics 24 (2022)
  12. M V Jabir, et al., Scientific Reports 6 (2016) 21877.
  13. B S Harshith and G K Samanta, Scientific Reports 9 (2019) 10916.
  14. T Omatsu, K Miyamoto, and A J Lee, Journal of Optics 19 (2017) 123002.
  15. Y Li, et al., Journal of the Optical Society of America B 32 (2015) 407.
  16. S Araki, et al., Applied Optics 57 (2018) 620.
  17. N Apurv Chaitanya, et al., Optics Letters 41 (2016) 2715.
  18. Y Wu, et al., Optics Express 25 (2017) 30820.
  19. A de las Heras, et al., Optica 9 (2022) 71.
  20. M Ababaike, et al., Scientific Reports 11 (2021) 8013.
  21. S Ghavami Sabouri, Journal of Optics 24 (2022) 065501.
  22. H Wang, et al., Applied Physics Letters 221101 (2018) 113.
  23. N V Bloch, et al., Physical Review Letters 108 (2012) 233902.
  24. R Zhao, et al., Optics Express 28 (2022) 39241.
  25. W Ma, et al., Journal of Optics 24 (2022) 065701.
  26. S Deachapunya, S Srisuphaphon, and S. Buathong, Scientific Reports 12 (2022) 6061.
  27. E Alonso Guzmán and A V Arzola, The Journal of the Optical Society of America B 39 (2022) 1233.
  28. Y Pan, et al., Scientific Reports 6 (2016) 29212.
  29. D Gauthier, et al., Nature Communications 8 (2017) 14971.
  30. R F Barros, et al., Journal of Physics B: Atomic, Molecular and Optical Physics 52 (2019) 244002.
  31. S G Sabouri, et al., IEEE Journal of Selected Topics in Quantum Electronics 20 (2014) 563.
  32. N Lastzka and R Schnabel, Optics Express 15 (2007) 7211.
  33. V G Dmitriev, G G Gurzadyan, and D N Nikogosyan, “Handbook of nonlinear optical crystals” Springer Verlag (1991)
  34. J Villarroel, et al., Optics Express 18 (2010) 20852.
  35. G D Boyd and D A Kleinman, Journal of Applied Physics 39 (1968) 3597.
  36. A D’Errico et al., Optica 4 (2017) 1350.
  37. V V Kotlyar, A A Kovalev, and A P Porfirev, Optics Express 27 (2019) 11236.
  38. F A Bovino, et al., The Journal of the Optical Society of America B 28 (2011) 2806.
  39. S J Brosnan and R L Byer, IEEE Journal of Quantum Electronics 15 (1974) 415.

ارتقاء امنیت وب با وف ایرانی