Document Type : Original Article
Authors
Department of Physics, University of Birjand, Birjand, Iran
Abstract
Recently, the ΛΛ potential at nearly physical quark masses has been calculated in the lattice QCD simulations by the HAL QCD Collaboration which are the most consistent potential with the experimental data. In this study making use of this ΛΛ interaction the binding energy and the radius matter for the ground state of hypernucleus (_ΛΛ^6)He is calculated via solving the coupled Faddeev equations. Here, for the Λα interaction; three different and common types of interactions, the Isle-type potential, the single Gaussian potential and the Maeda-Schmidt potential are examined. Numerical analyzes for (_ΛΛ^6)He using three ΛΛ interaction models and three models of phenomenological Λα interaction lead to the values of ground state energy between 7.197 and 8.408 MeV, and the value of the radius of matter in the range of 1.731 to 1.954 fm. Numerical results show that the minimum value of ground state binding energy, which is closest to the experimental value, occurs when one uses the HAL QCD ΛΛ potential at lattice time t⁄a=12 and the MS phenomenological type Λα potential. Also, the geometrical properties of (_ΛΛ^6)He system are investigated.
Keywords
Main Subjects
- D J Prowse, Rev. Lett. 17 (1966) 782.
- H Takahashi, et al., Phys. Rev. Lett. 87 (2001) 212502.
- J K Ahn, et al., Phys. Rev. C 88 (2013) 014003.
- E Hiyama and K. Nakazawa, Rev. Nucl. Part. Sci. 68 (1) (2018) 131.
- M M Nagels, T A Rijken, and J J de Swart, Rev. D 15 (1977) 2547.
- V G J Stoks and Th A Rijken, Rev. C 59 (1999) 3009.
- K S Myint, S Shinmura, Y Akaishi, Phys. J. A 16 (2003) 21.
- N Ishii, S Aoki, and T Hatsuda, Rev. Lett. 99 (2007) 022001.
- K Sasaki, et al., Nucl. Phys. A 998 (2020) 121737.
- L Fabbietti, V M Sarti, and O V Doce, Rev. Nucl. Part. Sci. 71 (2021) 377.
- S Acharya, ALICE Collaboration, Nature 588 (2020) 232.
- I Filikhin and A Gal, Nucl. Phys. A 707 (3) (2002) 491.
- R H Dalitz and B Downs, Rev. 111 (1958) 967.
- Y Kurihara, Y Akaishi, and H Tanaka, Theor. Phys.71 (1984) 561; B. Zeitnitz,“Few Body Problem in Physics”, Elsevier, New York, II (1984).
- Y Kurihara, Y Akaishi, and H Tanaka, Rev. C 31 (1985) 971.
- S Maeda and E W Schmid, “Few-body Problem in Physics” vol 2 ed B Zeitnitz (Amsterdam: Elsevier) (1984).
- M Zhukov, et al., Phys. Rep. 231 (4) (1993) 151.
- J Casal, et al., Phys. Rev. C 102 (2020) 064627.
- J Casal Berbel, D. thesis, Universidad de Sevilla (2016).
- A A Rajabi, J. Phys. Res. 5, 2 (2005) 37.
- T Motoba, H Bando, and K Ikeda, Theor. Phys. 70 (1983) 189.
- O Portilho, S A Coon, J. Phys. G 17 (1991) 1375.
- S Oryu, et al., Few-Body Systems 28 (2000) 103.
- E Cravo, A C Fonseca, and Y Koike, Rev. C 66 (2002) 014001.
- D H Davis, in: LAMPF Workshop on Physics, eds. B F Gibson, W R Gibbs, M B Johnson, AIP Conf. Proc., Vol. 224 (AIP, New York, 1991) 38.
- Y C Tang, R C Herndon, Rev. B 138 (1965) 637.
- B F Gibson, A Goldberg, and M S Weiss, Rev. C 6 (1972) 741.
- K Ikeda, H Bando, and T Motoba, Theor. Phys. Suppl. 81 (1985) 147.
- T Yamada, C Nakamoto, Rev. C 62 (2000) 034319.
- S B Carr, I R Afnan, and B F Gibson, Phys. A 625 (1997) 143.