Document Type : Original Article

Author

Physics Department, School of Sciences, Shiraz University, Shiraz, Iran

Abstract

In this paper, the two Higgs doublet model (2HDM) is investigated for simultaneous observation of the signals of the neutral Higgs particles. The goal of this work is to introduce model types which result in observable signals for these particles at future lepton colliders. Then for every selected type, the parameter space of the model is investigated and the mass regions of the neutral Higgs bosons which are suitable for finding their signals are identified. Introducing several example values for the masses of these particles, events of electron-positron collisions with center of mass energy of 1000 GeV are generated, and taking into account the effects of a typical detector, they are analyzed and the Higgs particles masses are reconstructed. Plots obtained in this analysis are one of the richest possible plots for the Higgs particles signals and provide information about the Z particle mass, the light Higgs particle with the mass of 125 GeV and heavy neutral Higgs particles (H, A) at the same time. Finally, estimations about the needed amount of data for the observation of the signal of the neutral Higgs particles are provided.

Keywords

Main Subjects

  1. G Aad, et al., ATLAS, Phys. Lett. B 716 (2012) 1.
  2. S Chatrchyan, et al., CMS, Phys. Lett. B 716 (2012) 30.
  3. P W Higgs, Rev. Lett. 13 (1964) 508.
  4. P W Higgs, Lett. 12 (1964) 132.
  5. P W Higgs, Rev. 145 (1966) 1156.
  6. F Englert, R. Brout, Rev. Lett. 13 (1964) 321.
  7. G S Guralnik, C R Hagen, and T W B. Kibble, Rev. Lett. 13 (1964) 585.
  8. T W B Kibble, Rev. 155 (1967) 1554.
  9. T D Lee, Rev. D 8 (1973) 1226.
  10. G C Branco, Rev. D22 (1980) 2901.
  11. F Mahmoudi and O. Stal, Rev. D 81 (2010) 035016.
  12. CDF Collaboration, T. Aaltonen, et al., Science 376 (2022) 170.
  13. ATLAS Collaboration, ATLAS-CONF-2020-027
  14. A Djouadi, Rept. 459 (2008) 1.
  15. J Abdallah et al., Dark Univ. 9-10 (2015) 8.
  16. J E Kim and G. Carosi, Mod. Phys. 82 (2010) 557.
  17. A G Cohen, D B Kaplan and A E Nelson, Rev. Nucl. Part. Sci. 43 (1993) 27.
  18. S F King, Prog. Phys. 67 (2004) 107.
  19. S L Glashow and S. Weinberg, Rev. D 15 (1977) 1958.
  20. E Bagnaschi, et al., Phys. J. C 79 (2019) 617.
  21. G C Branco, et al., Rept. 516 (2012) 1.
  22. B Grzadkowski, et al., JHEP 12 (2018) 056.
  23. P Bechtle, et al., Phys. Commun. 181 (2010) 138.
  24. P Bechtle, et al., Phys. Commun. 182 (2011) 2605.
  25. P Bechtle, et al., PoS CHARGED 2012 (2012) 024.
  26. P Bechtle, et al., Phys. J. C 74 (2014) 2693.
  27. P Bechtle, et al., Phys. J. C 75 (2015) 421.
  28. P Bechtle, et al., Phys. J. C 74 (2014) 2711.
  29. O Stål and T Stefaniak, PoS EPS-HEP 2013 (2013) 314.
  30. P Bechtle, et al. High Energy Phys. 11 (2014) 039.
  31. M Hashemi and E Ebrahimi, Rev. D 103 (2021) 115008.
  32. M Hashemi and N Nowbakht Ghalati, Lett. B 830 (2022) 137153.
  33. D M Asner, et al., in: Community Summer Study 2013: Snowmass on the Mississippi, (2013
  34. M Aaboud, et al., ATLAS, Phys. Lett. B 783 (2018) 392.
  35. G Aad, et al., ATLAS, Eur. Phys. J. C 81 (2021) 396.
  36. A M Sirunyan, et al., CMS, J. High Energy Phys. 03 (2020) 055.
  37. M Hashemi and G Haghighat, Rev. D 100 (2019) 015047.
  38. Hashemi and G. Haghighat, Nucl. Phys. B 951 (2020) 114903.
  39. R L Workman et al., (Particle Data Group), to be published in Prog. Exp. Phys. 2022 (2022) 083C01.
  40. D Eriksson, et al., Phys. Commun. 181 (2010) 189.
  41. D Eriksson, et al., Phys. Commun. 181 (2010) 833.
  42. R Harlander, et al., arXiv:1312.5571, (2013).
  43. T Sjostrand, et al., Phys. Commun. 178 (2008) 852.
  44. J de Favereau, et al., DELPHES 3, High Energy Phys. 02 (2014) 057.
  45. M Cacciari, et al., JHEP 04 (2008) 068.
  46. R Brun and F Rademakers, Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Inst. & Meth. in Phys. Res. A 389 (1997) 81
  47. E Leogrande, et al., CLICdp-Note-2018-007, arXiv:1909.12728.

 

ارتقاء امنیت وب با وف ایرانی