Document Type : Original Article
Authors
Department of Physics, Amirkabir university of technology, Tehran, Iran
Abstract
Based on density functional theory (DFT) at the B3LYP level, we investigated the interaction of DNA nucleobases with carbon nano-rings in armchair and zigzag shapes. Van der Waals correction was applied to describe the long range term of bipolar interaction. Results indicate that a net electric charge was not transferred between the DNA bases and the carbon nano-rings. This indicates the interaction is of physical type. Outcomes show the following order for the strength of the interaction between the carbon nano-ring (9,9) and the four DNA nucleobases: guanine > adenine > cytosine > thymine. The corresponding order for the zigzag carbon nano-ring (15.0) is adenine ≈ guanine > cytosine > thymine, suggesting carbon nano-ring (9,9) may have a potential to specify the sequencing of DNA.
Keywords
Main Subjects
- J D Ligt, et al., New England Journal of Medicine 367 (2012) 1921.
- C Bettegowda, et al., Science translational medicine 6 (2014) 224ra24.
- A Zou, et al., The Journal of Physical Chemistry B 124 (2020) 9490.
- Y Goto, et al., Journal of human genetics 65(2020) 69.
- Y Cai, et al., Plant communications 2 (2021) 100106.
- A R Yadav, S K Mohite, Research Journal of Pharmaceutical Dosage Forms and Technology 12 (2020) 301.
- M Qasemnazhand, F Khoeini, F Marsusi, Research Square (2021).
- Kumar, N Thakur, and M Sharma. AIP Conference Proceedings 2265 (2020) 030352.
- A S Kordbacheh, A Kia, and E Nadimi, Iranian Conference on Electrical Engineering-ICEE (2017) 498.
- R L Kumawat, et al., ACS applied materials & interfaces 11 (2018) 219.
- Y Wang, The Journal of Physical Chemistry C 112 (2008) 14297.
- D Umadevi, G N Sastry, The Journal of Physical Chemistry Letters 2 (2011) 1572.
- M Eslami, A A Peyghan. Thin Solid Films 589 (2015) 52.
- A Das, et al., Chemical Physics Letters 453 (2008) 266.
- S J Sowerby, et al. Proceedings of the National Academy of Sciences 98 (2001) 820.
- H Liu, et al., Science 327 (2010) 64.
- J He, et al., Journal of Physics: Condensed Matter 22 (2010) 454112.
- N Varghese, et al., ChemPhysChem 10 (2009) 206.
- S Grimme, et al., The Journal of chemical physics 132 (2010) 154104.
- J Ireta, et al., The Journal of Physical Chemistry A 108 (2004) 5692.
- A D Becke, Chem. Phys 98 (1993) 5648.
- M Qasemnazhand, F Khoeini, and F Marsusi, Results in Physics (2022) 106066.
- R Jasti, et al., Journal of the American Chemical Society 130 (2008) 17646.
- T Hayashi, et al., Nano letters 3 (2003) 887.
- M Qasemnazhand, F Khoeini, F Marsusi, Scientific reports 11 (2021) 1.
- F Marsusi, M Qasemnazhand, Nanotechnology 27 (2016) 275704.
- M Qasemnazhand, F Khoeini, and S Shekarforoush, New Journal of Chemistry 43 (2019) 16515.
- M Qasemnazhand, F Marsusi, Journal of Research on Many-body Systems 7 (2017) 77.
- R Habibpour Gharacheh and R Vaziri, Journal of Research on Many-body Systems Special Issue 2 (2016) 11.
- G Sivaraman, M Fyta, Nanoscale 6 (2014) 4225.
- S Monavari, et al., Research Square (2022).
- M Qasemnazhand and F Khoeini, F Marsusi, arXiv 2003 (2020) 09835.
- M Qasemnazhand and F Khoeini, Nanoscale 8 (2021) 32.
- L Mahdavian, Organic Chemistry Research 2 (2016) 102.
- T Steiner, Angewandte Chemie International Edition 41 (2002) 48.
- M Qasemnazhand, F. Khoeini, and M. Badakhshan, J. Phys. Res. 21 (2021) 441.
- M Qasemnazhand, F Khoeini, and F Marsusi, Frontiers in Physics 9 (2021)
- S M Monavari, et al., Scientific Reports 13, (2023) 3118.
- M Qasemnazhand, F Khoeini, and M Badakhshan, Materials Today Chemistry 28 (2023) 101383.