Document Type : Original Article

Authors

Department of Physics, Amirkabir university of technology, Tehran‎, Iran

Abstract

Based on density functional theory (DFT) at the B3LYP level, we investigated the interaction of DNA nucleobases with carbon nano-rings in armchair and zigzag shapes. Van der Waals correction was applied to describe the long range term of bipolar interaction. Results indicate that a net electric charge was not transferred between the DNA bases and the carbon nano-rings. This indicates the interaction is of physical type. Outcomes show the following order for the strength of the interaction between the carbon nano-ring (9,9) and the four DNA nucleobases: guanine > adenine > cytosine > thymine. The corresponding order for the zigzag carbon nano-ring (15.0) is adenine ≈ guanine > cytosine > thymine, suggesting carbon nano-ring (9,9) may have a potential to specify the sequencing of DNA.

Keywords

Main Subjects

  1. J D Ligt, et al., New England Journal of Medicine 367 (2012) 1921.
  2. C Bettegowda, et al., Science translational medicine 6 (2014) 224ra24.
  3. A Zou, et al., The Journal of Physical Chemistry B 124 (2020) 9490.
  4. Y Goto, et al., Journal of human genetics 65(2020) 69.
  5. Y Cai, et al., Plant communications 2 (2021) 100106.
  6. A R Yadav, S K Mohite, Research Journal of Pharmaceutical Dosage Forms and Technology 12 (2020) 301.
  7. M Qasemnazhand, F Khoeini, F Marsusi, Research Square (2021).
  8. Kumar, N Thakur, and M Sharma. AIP Conference Proceedings 2265 (2020) 030352.
  9. A S Kordbacheh, A Kia, and E Nadimi, Iranian Conference on Electrical Engineering-ICEE (2017) 498.
  10. R L Kumawat, et al., ACS applied materials & interfaces 11 (2018) 219.
  11. Y Wang, The Journal of Physical Chemistry C 112 (2008) 14297.
  12. D Umadevi, G N Sastry, The Journal of Physical Chemistry Letters 2 (2011) 1572.
  13. M Eslami, A A Peyghan. Thin Solid Films 589 (2015) 52.
  14. A Das, et al., Chemical Physics Letters 453 (2008) 266.
  15. S J Sowerby, et al. Proceedings of the National Academy of Sciences 98 (2001) 820.
  16. H Liu, et al., Science 327 (2010) 64.
  17. J He, et al., Journal of Physics: Condensed Matter 22 (2010) 454112.
  18. N Varghese, et al., ChemPhysChem 10 (2009) 206.
  19. S Grimme, et al., The Journal of chemical physics 132 (2010) 154104.
  20. J Ireta, et al., The Journal of Physical Chemistry A 108 (2004) 5692.
  21. A D Becke, Chem. Phys 98 (1993) 5648.
  22. M Qasemnazhand, F Khoeini, and F Marsusi, Results in Physics (2022) 106066.
  23. R Jasti, et al., Journal of the American Chemical Society 130 (2008) 17646.
  24. T Hayashi, et al., Nano letters 3 (2003) 887.
  25. M Qasemnazhand, F Khoeini, F Marsusi, Scientific reports 11 (2021) 1.
  26. F Marsusi, M Qasemnazhand, Nanotechnology 27 (2016) 275704.
  27. M Qasemnazhand, F Khoeini, and S Shekarforoush, New Journal of Chemistry 43 (2019) 16515.
  28. M Qasemnazhand, F Marsusi, Journal of Research on Many-body Systems 7 (2017) 77.
  29. R Habibpour Gharacheh and R Vaziri, Journal of Research on Many-body Systems Special Issue 2 (2016) 11.
  30. G Sivaraman, M Fyta, Nanoscale 6 (2014) 4225.
  31. S Monavari, et al., Research Square (2022).
  32. M Qasemnazhand and F Khoeini, F Marsusi, arXiv 2003 (2020) 09835.
  33. M Qasemnazhand and F Khoeini, Nanoscale 8 (2021) 32.
  34. L Mahdavian, Organic Chemistry Research 2 (2016) 102.
  35. T Steiner, Angewandte Chemie International Edition 41 (2002) 48.
  36. M Qasemnazhand, F. Khoeini, and M. Badakhshan, J. Phys. Res. 21 (2021) 441.
  37. M Qasemnazhand, F Khoeini, and F Marsusi, Frontiers in Physics 9 (2021)
  38. S M Monavari, et al., Scientific Reports 13, (2023) 3118.
  39. M Qasemnazhand, F Khoeini, and M Badakhshan, Materials Today Chemistry 28 (2023) 101383.

ارتقاء امنیت وب با وف ایرانی