Document Type : Original Article


Physics Department, Sahand University of Technology, 51335–1996, Tabriz, Iran


In this article, we investigated electromagnetic oscillations in a quantum nonuniform electron-positron magnetoplasm interacting with a short pulse laser, in low frequency approximation, in two parallel and perpendicular directions. According to our investigations, the waves in the parallel direction are affected by ponderomotive force, vigorously. Quantum corrections cause the magnitude of this force to change and accordingly, cause the magnitude of phase and group velocities of the waves, as well as, their instability to change. In the parallel direction, initial quantities of number density and streaming velocity affect the waves directly, but the magnetic field affects these waves through the ponderomotive force, indirectly. As well, absorption of the laser pulse causes the plasma waves to grow in the laser direction and damp in the opposite direction. While, the amplification of the laser causes the waves to damp in the laser direction and grow in the opposite direction. In the perpendicular direction, the waves are influenced by the transverse gradient of initial quantities of number density, streaming velocity and external magnetic, in addition to their amounts, while these gradients don't have any effect on the parallel waves. Likewise, we investigate the behavior of the waves for different values of the transverse gradients. So that we indicate that the presence of each of gradients can completely change the behavior of the waves. As well, the investigations indicated that the presence of the transverse gradient of the initial density or streaming velocity couldn’t create the electromagnetic waves in the perpendicular direction but, the transverse gradient of the magnetic field could initiate these waves.


Main Subjects

  1. S Ichimaru, Basic Principles of Plasma Physics, A Statistical Approach, Benjamin, Massachusetts, (1973).
  2. J Weiland, Collective Modes in Inhomogeneous Plasma, Institute of Physics, Bristol, (2000).
  3. A Hasegawa and K Mima, Phys. Fluids 21 (1978) 87.
  4. B B Kadomtsev, “Plasma Turbulence, Academic Press”, New York (1965).
  5. M J Rees, “The Very Early Universe”, edited by G W Gibbons, S W Hawking, and S Siklas, Cambridge University Press, Cambridge (1983).
  6. F C Michel, Rev. Mod. Phys. 54 (1982) 1; Hawking, and S Siklas, Cambridge University Press, Cambridge (1983).
  7. H R Mille and P Witta, “Active Galactic Nuclei”, Springer, Berlin, (1987).
  8. M C Begelman, R D Blandford, and M J Rees, Rev. Mod. Phys. 56 (1984) 255.
  9. M L Burns, “Positron-Electron Pairs in Astrophysics”, American Institute of Physics, Melville, NY, (1983).
  10. F C Michel, “Theory of Neutron Star Magnetosphere”, Chicago University Press, Chicago, (1991).
  11. P Helander and D J Ward, Phys. Rev. Lett. 90 (2003) 135004.
  12. E P Liang, S C Wilks, and M Tabak, Phys. Rev. Lett. 81 (1998) 4887.
  13. C P Ridgers, C S Brady, R Duclous, J G Kirk, K Bennett, T D Arber, A P L Robinson, and A R Bell, Phys. Rev. Lett. 108 (2012) 165006.
  14. A W Trivelpiece, Comments Plasma Phys. Controlled Fusion 1 (1972) 57.
  15. H K Malik, Opt. Commun. 278 (2007) 387.
  16. Y N Istomin, Phys. Lett. A 299 (2002) 248.
  17. L Shenggang, R J Barker, Z Dajun, Y Yang, and G Hong, IEEE Trans. Plasma Sci., 28 (2000) 2135.
  18. A K Aria and H K Malik, Opt. Commun. 282 (2009) 423.
  19. V K Yadav and D Bora, Pramana 63 (2004) 563.
  20. S Bhattacharjee and H Amemiya, J. Phys. D: Appl. Phys. 33 (2000) 1104.
  21. G S Nusinovich, L A Mitin, and A N Vlasov, Phys. Plasmas 4 (1997) 4394.
  22. A M Anpilov, N K Berezhetskaya, V A Kopev, and I A Kossyi, J. Experim. Theoretical Phys. Lett. 62 (1995) 783.
  23. S Bhattacharjee and H Amemiya, Vacuum 58 (2000) 222.
  24. Md K Al-Hassan, H Ito, N Yugami, and Y Nishida, Phys. Plasmas 12 (2005) 112307.
  25. A R Niknam, M Hashemzadeh, and M M Montazeri, IEEE Trans. Plasma Sci. 38 (2010) 2390.
  26. B K Pandey, R N Agarwal, and V K Tripathi, Phys. Lett. A 349 (2006) 245.
  27. A G York and H M Milchberg, Phys. Rev. Lett. 100 (2008) 195001.
  28. S Abedi, D Dorranian, M E Abari, and B Shokri, Phys. Plasmas 18 (2011) 093108.
  29. B Shokri and A R Niknam, Phys. Plasmas 13 (2006) 113110.
  30. A Y Wong, J. Phys. 38 (1977) C6.
  31. M E Abari and B Shokri, Phys. Plasmas 18 (2011) 053111.
  32. A R Niknam, M Hashemzadeh, and B Shokri, Phys. Plasmas 16 (2009) 033105.
  33. A R Niknam and B Shokri, Phys. Plasmas, 14 (2007) 052104.
  34. H K Malik and A K Aria, J. Appl. Phys. 108 (2010) 013109.
  35. W M Moslem, S Ali, P K Shukla, and B Eliason, Phys. Lett. A 372 (2008) 3471.
  36. W F El-Taibani, W M Moslem, Miki Wadati, and P K Shukla, Phys. Lett. A 372 (2008) 4067.
  37. S A Khan, M K Ayub, and Ali Ahmad, Phys. Plasmas 19 (2012) 102104.
  38. Shalom Eliezer, The Interaction of High-Power Lasers with Plasmas”, IoP Publishing, Bristol and Philadelphia, (2002).
  39. L Stenflo, J. Plasma Physics 5 (1971) 413.
  40. P K Shukla, N Shukla, and L Stenflo, J. Plasma Physics 76 (2009) 25.
  41. N Shukla, P K Shukla, B Eliasson, and L Stenflo, Phys. Lett. A 374 (2010) 1749.
  42. R J Goldston and P H Rutherford, “Introduction to plasma physics”, IoP, (1995).
  43. Mourad Djebli, Z. Naturforsch. A 70 (2015) 875.
  44. Yuan shi, Hong Qin, and Nathaniel J. Fisch, Phys. Plasmas 25 (2018) 055706.
  45. A Abdikian and S Mahmood, Phys. Plasmas 23 (2016) 122303.
  46. Peng Zheng, C P Ridgers, and A G R Thomas, New J. Phys. 17 (2015) 043051.

تحت نظارت وف ایرانی