نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک و مهندسی‌ انرژی، دانشگاه صنعتی امیرکبیر، صندوق پستی ۴۴۱۳-۱۵۸۷۵، تهران

چکیده

امروزه یکی از روش‌های دزسنجی در پرتودهی‌ خارجی انجام محاسبات پیچش/برهم‌نهی با بهره‌گیری از کرنل دزجذبی فوتون‌ است. کرنل دزجذبی برابر با توزیع دزجذب شده حول محل برهم‌کنش فوتون بر واحد تعداد برهم‌کنش‌های اولیه انجام شده درون یک حجم کوچک از ماده است. هدف از انجام این پژوهش محاسبۀ کرنل دزجذبی فوتون و مطالعۀ رفتار شعاعی و زاویه‌ای آنها است. در این پژوهش کرنل دزجذبی با روش مبتنی‌بر ابزار مونت‌کارلو Geant4 برای فوتون تک‌انرژی در بازۀ انرژیMeV ۵-۰٫۳ در یک مادۀ همگن در مختصات کروی محاسبه شده است. به‌منظور مطالعۀ دقیق، مقدار آن براساس ذرات باردار تولیدشده در برهم‌کنش‌های متوالی فوتون گروه‌بندی شد. با توجه به نتایج، مقدار کرنل دزجذبی با افزایش زاویه‌، نسبت به امتداد جهت فوتون اولیه، به سرعت کاهش می‌یابد. با افزایش فاصلۀ شعاعی از محل برهم‌کنش، مقدار آن افزایش و سپس شدیداً کاهش یافت. کرنل دزجذبی برای فوتون‌ با انرژی‌اولیۀ پایین حول محل برهم‌کنش تقریباً به صورت متقارن توزیع شد، درحالی که با افزایش ‌انرژی‌اولیه، در زاویه‌های روبه‌جلو توزیع شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Calculation of photon absorbed dose kernel in a homogeneous water phantom by Monte Carlo Geant4 toolkit

نویسندگان [English]

  • Keyvan Tabaei
  • Mojtaba Shamsaei Zafarghand,

Energy Engineering and Physics Department, Amirkabir University of Technology, P.O.BOX: 4413-15875, Tehran, Iran

چکیده [English]

Nowadays, convolution/superposition(C/S) is used to calculate absorbed dose distribution by using the absorbed dose kernel(ADK). ADK describes the absorbed dose distribution per number of interaction at a small volume around the point of photon interaction. The purpose of this study is to calculate ADK and investigate its angular and radial behavior. In this study, ADK is calculated in a homogeneous water phantom in the polar coordinates by using the Monte Carlo Geant4 toolkit for monoenergetic photons with energies in the range 0.3MeV-5MeV. To study accurately, ADK is divided into several groups in order of produced charged particle set in motion at each photon interaction. Our result shows ADK rapidly decreases as the polar angle, with respect to the incident photon direction, is increased. As the radial distance from the interaction point increases, ADK is raised and then strongly decreased. ADK is symmetrically distributed around the point of interaction for low incident photon energy while forward distributed for high incident energy photons.

کلیدواژه‌ها [English]

  • absorbed dose kernel
  • dose distribution calculation
  • convolution
  • Geant4 toolkit
  1. A Boyer and E Mok, in “Proceedings of the Eighth International Conference on the Use of Computers in Radiation Therapy (1984) 14.
  2. T Mackie and J Scrimger, in “Proceedings of the Eighth International Conference on the Use of Computers in Radiation Therapy” (1984) 36.
  3. A Boyer and E Mok, Medical physics 12 (1985) 169.
  4. T Mackie, J Scrimger and J Battista, Medical physics 12 (1985)
  5. A L Boyer and E C Mok, Medical physics 13(1986) 503.
  6. R Mohan, C Chui, and L Lidofsky, Medical physics 13 (1986) 64.
  7. A Ahnesjö P Andreo, and A Brahme, Acta Oncologica 26 (1987) 49.
  8. D Liu and R S Sloboda, Medical physics 41 (2014) 051701.
  9. A Iwasaki et al., Radiological physics and technology 4 (2011) 203.
  10. S A Naqvi M A Earl, and D M Shepard, Physics in Medicine & Biology 48 (2003) 2101.
  11. L Tillikainen et al., Physics in Medicine & Biology 53 (2008) 3821.
  12. A Ahnesjö, Medical physics 16 (1989) 577.
  13. D Finocchiaro, Plos one 15 (2020) e0236466.
  14. S Singh, biomedical physics & engineering 9 (2019) 613.
  15. A M Reinhart et al., The British journal of radiology 90 (2017) 20160426.
  16. S Kimura et al., Radiological physics and technology 4 (2011) 216.
  17. T Mackie et al., Physics in Medicine & Biology 13 (1988) 1.
  18. Dieudonné A et al., Journal of nuclear medicine 54 236 (2013).
  19. A Ahnesjö, in “8th International Conference on Computers in Radiotherap” (1984) 17.
  20. A Ahnesjö, M Saxner, and A Trepp, Medical physics 19 (1992) 263.
  21. S Bartzsch and U Oelfke, Medical physics 40 (2013) 111714.
  22. S A Graves, Medical physics 46 (2019) 5284.
  23. V Klimanov et al., Moscow University Physics Bulletin 71 (2016) 431.
  24. J Y Huang et al., Medical physics 40 (2013) 121721.
  25. C Janicki and J Seuntjens, Medical physics 31 (2004) 814.
  26. A M Bergman, K Otto and C Duzenli, Medical physics 31 (2004) 3279.
  27. B M Mendes, Radiation Physics and Chemistry 181 (2021) 109327.
  28. H Uusijärvi et al., Cancer biotherapy and radiopharmaceuticals 24 (2009) 416.
  29. E Mainegra‐Hing, D Rogers, and I Kawrakow, Medical physics 32 (2005) 685.
  30. S Agostinelli et al., Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250.
  31. J Allison et al., IEEE Transactions on nuclear science 53 (2006) 270.

 

تحت نظارت وف ایرانی