Document Type : Original Article
Authors
Faculty of Physics, Sharif University of Technology, Tehran, Iran
Abstract
The standard model of cosmology,, has been successful in describing many observations. With the improvement of the number and the accuracy of observations, some inconsistencies among key cosmological parameters of the model have emerged. Many alternative models are proposed to alleviate these tensions. On the other hand, some observations of peculiar velocity show higher values than expected in a universe which may contradict the cosmological principle. In this work, we used linear perturbation theory to measure bulk flow and parameter in two alternative cosmological models and XCDM. We compared measured bulk flows with the predictions and some observations. We did a analysis to see which model is preferred by data. We find that model predicts higher bulk flows and is more consistent with observational data but does not reduce tension. Bulk flows measured in the XCDM model are lower compared to . However, this model can reconcile tension.
Keywords
Main Subjects
- N Aghanim, Y Akrami, M Ashdown, et al., A&A 641 (2020) A6.
- M Tegmark et al., Phys. Rev. D 69 (2004) 103501.
- L Perivolaropoulos and S Foteini, New Astronomy Reviews 95 (2022) 101659.
- V Poulin, T L Smith, T Karwal, and M Kamionkowski, Phys. Rev. Lett.122 (2019) 221301.
- M Chevallier and D Polarski, Int. J. Mod. Phys. D 10 (2001) 213.
- N Khosravi, S Baghram, N Afshordi, and N Altamirano, Physical Review D. 99 (2019) 103526.
- J Colin, R Mohayaee, S Sarkar, and A Shafieloo, Mon. Not. Roy. Astron. Soc. 414 (2010) 264.
- C Magoulas et al., Proceedings of the International Astronomical U., 11(S308) (2014) 336.
- L Amendola and S Tsujikawa. Dark energy: Theory and observations, Cambridge University Press (2010).
- J M Bardeen, J R Bond, N Bond, et al., Astrophysical J. 304 (1986) 15.
- S S Boruah, M J Hudson and G Lavaux, Mon. Not. Roy. Astron. Soc. 498, 2 (2020) 2703.
- R Mohayaee, M Rameez, and S Sarkar, arXiv:2003.10420v2 (2020).
- E Di Valentino, O Mena, P Supriya, et al., Class. Quantum Grav. 38 (2021) 153001.
- A G Riess, S Casertano. et al., The Astrophysical Journal Letters, 908 (2020) L6.
- W L Freedman, et al., The Astrophysical Journal 882, 1 (2019) 34.
- E Di Valentino, L Anchordoqui, et al., Astroparticle Physics 131 (2021) 102606.
- Y Wang, L Pogosian, G B Zhao and A Zucca, Astrophys. J. Lett. 869 (2018) L8.
- P A Ade, N Aghanim, et al., Astronomy and Astrophysics, 594 (2016) A13.
- M Betoule et al., Astron.Astrophys. 568 (2014) A22.
- F Beutler, et al., Mon. Not. Roy. Astron. Soc. 416 (2011) 3017.
- A J Ross, et al., Mon. Not. Roy. Astron. Soc. 449, 1 (2015) 835.
- Y Wang, et al., Mon. Not. Roy. Astron. Soc. 469, 3 (2017) 3762.
- M Ata, et al., Mon. Not. Roy. Astron. Soc. 473, 4 (2018) 4773.
- Font-Ribera A et al., JCAP 05 (2014) 027.
- A G Riess, et al, ApJ, 826 (2016) 56.
- F Qin, D Parkinson, C Howlett, K Said., Astrophys. J. 922, 1 (2021) 59.
- M Scrimgeour, T Davis, et al., Mon. Not. Roy. Astron. Soc. 455 (2016) 386.
- B E Stahl, T de Jaeger, S S Boruah, et al., arXiv:2105.05185 (2021).
- R Watkins, H Feldman, M J Hudson, Mon. Not. Roy. Astron. Soc. 392 (2009) 743.
- A Kogut, C Lineweaver, G F Smoot, C L Bennett, A Banday, et al., Astrophys. J. 419 (1993) 1.
- S Alam, et.al., Mon. Not. Roy. Astron. Soc. 470 (2017) 2617
- F Beutler, C Blake, et al., Mon. Not. Roy. Astron. Soc., 423 (2012) 3430.
- C Howlett, A Ross, L Samushia, W Percival, M Manera, Mon. Not. Roy. Astron. Soc 449 (2015) 848.
- P Zarrouk, E Burtin, H Gil-Marín, et al., Mon. Not. Roy. Astron. Soc. 477 (2018) 1639.
- T Okumura, C Hikage, T Totani et al. Publications of the Astronomical Society of Japan 68 (2015)38.
- F Habibi, S Baghram, and S Tavasoli, Int.J.Mod.Phys. D 27, 03 (2017) 1850019.
- S Baghram, S Tavasol, F Habibi, R. Mohayaee, and J. Silk, Int. J. Mod. Phys. D 23 12 (2014) 1442025.