Document Type : Original Article

Authors

Physics and Plasma, Faculty of Physics, Tabriz UniversityTabriz, Iran

Abstract

In this article, a one-dimensional kinetic model is used to obtain space charge solitary waves in a beam of hot charged particles into a transmission channel with a resistance wall of radius rw. The axial electric field is obtained as , where  and are geometric constants. In addition, due to the resistance of the wall, an electric field  appears. The moments of the Vlasov equation for the water bag distribution function are converted into fluid equations and these fluid equations are reduced to the kdv equation using the reduced perturbation method. The shape of the fast and slow space charge solitary waves caused by the beam of hot charged particles in the presence of wall resistance is obtained by numerically examining the KdV equation at different times. Finally, it is revealed that with the increase of the wall resistance, the growth(attenuation) rate of the relative amplitude of the slow (fast) space charge soliton waves caused by the beams of charged particles increases.

Keywords

Main Subjects

  1. M Nazmabadi et al., J. of Phys. Res. 15,129(2014)(In Persian)
  2. M Reiser, “Teory and Design of Charged Particle Beams”, Wiley,  New York (1994).
  3. D B Williams and C  B Carter, “Transmission Electron Microscopy, Plenum”, New York (1996).
  4. M Reiser, “Theory and Design of Charged Particle Beams”, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2008).
  5. Jr Stanley Humphries, “Charged Particle Beams”, John Wiley and Sons (2002).
  6. Jr Stanley Humphries, Charged Particle Beams, John Wiley and Sons (2001).
  7. Y S  Kivshar, Rev. A 42, 1757 (1990).
  8. J S  Russel, Report of the Fourteenth Meeting of British Association for the Advancement of Science, Murray, London, pp  311-390 (1844).
  9. T Filippov, “The Versatile Solitin”,  Springer Verlag (2000).
  10. P G  Drazin and  R  S  Johnson, “Solitons: An Introduction”, Cambridge university press, Cambridge (1989).
  11. R C  Davidson, “Methods in Noninear Plasma Theory”, Academic, New York (1972).
  12. S Banerjee, and B Ghosh,  Pramana 90 (2018) 1.
  13. Woo-Pyo Hong and Young-Dae Jung, Zeitschrift für Naturforschung A71, 10 (2016) 971.
  14. A Neogi and S Ghosh. Physical Review B44, 23 (1991) 13074
  15. B I  Sturman, M  Mann, and K H  Ringhofer, Optics letters 17, 22 (1992) 1620.
  16. Langmuir, Irving. Physical review33, 6 (1929) 954.
  17. H Schamel and  R  Fedele, Physics of Plasmas 7, 8 (2000) 3421.
  18. Bonilla, Luis L and JoséM Vega. Physics Letters A156, 3-4 (1991) 179.
  19. Y Nakamura and K  Ohtani, Journal of Plasma Physics  53 , 235 (1995)
  20. H Suk, J  G  Wang, and M  Reiser, Plasma 3 , 2 (1996).
  21. R C  Davidson and E  A  Startsev, Rev. ST Accel. Beams 7 (2004) 024401.
  22. M Reiser, “Theory and Design of Charged Particle Beams”, Wiley, New York (1994).
  23. H Suk, J  G  Wang, and M  Reiser. Physics of Plasmas 3, 2 (1996) 669.
  24. Davidson, Ronald C , and Edward A Startsev,  Physical Review Special Topics-Accelerators and Beams 7, 2 (2004) 024401.

ارتقاء امنیت وب با وف ایرانی