Document Type : Original Article
Authors
1 Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Mathematics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Abstract
In this research, we study the coherent states of a deformed nonlinear harmonic oscillator. We use the perturbation theory to compute eigenstates and eigen-values for a deformed nonlinear harmonic oscillator and then define the generalized coherent states based on the Gazeau-Klauder formulation. Then, using the Mandel parameter and the second-order correlation function, we will investigate the statistical properties of the system. The analysis shows that the coherent states for a deformed and non-deformed nonlinear harmonic oscillator follows the sub-Poissonian and super-Poissonian statistics, and exhibits the antibunching and bunching effects, respectively. In addition, we show that the anti-correlation function for a deformed nonlinear oscillator is strongly fluctuating and irregular. Also, the anti-correlation function of a non-deformed nonlinear harmonic oscillator shows the phenomena of collapse and revival of fractional revelations. We also examine the limits of different parameters so that the obtained results are valid.
Keywords
- deformed nonlinear harmonic oscillator
- coherent states
- Mandel parameter
- super-Poissonian and sub-Poissonian statistical distributions
- the bunching and antibunching effects
Main Subjects
- P M Mathews and M Lakshmanan, Q. Math. 32 (1974) 215.
- M Lakshmanan and S Rajasekar, “Nonlinear dynamics: Integrability, Chaos, and Patterns”, (Springer-Verlag, Berlin) (2003).
- N Amir and S Iqbal, Theor. Phys. 62 (2014) 790.
- J F Cariñena, M F Rañada, M Santander, and M Senthilvelan, Nonlinearity 17 (2004) 1941.
- J F Cariñena, M F Rañada, and M Santander, Math. Phys. 54 (2004) 285.
- J F Cariñena, M F Rañada, and M Santander, Phys. 322 (2007) 2249.
- B Midya and B Roy, Phys. A: Math. Theor. 42 (2009) 285301.
- X H Wang and Y B Liu, J. Theor. Phys. 50 (2011) 2697.
- R Roknizadeh and H Heydari, J. Geom. Methods Mod. Phys. 10 (2013) 1350056.
- R Roknizadeh and H Heydari, Phys. 45, 7 (2015) 827.
- B Bagchi, S Das, S Ghosh, and S Poria, Phys. A: Math. Theor. 46 (2013) 032001.
- A Schulze-Halberg and J Wang, Few-Body Syst. 55 (2014) 1223.
- D Ghosh and B Roy, Phys. 353 (2015) 222.
- J R Klauder and B S Skagerstam, “CoherentStates:Applications in Physics and Mathematical Physics”, WorldScientific, Singapore, (1985).
- W M Zhang, D H Feng, and R Gilmore, Mod. Phys. 62 (1990) 867.
- A M Perelomov, “Generalized Coherent States and Their Applications” Springer-Verlag, Berlin, (1986).
- T Ali, J P Antoine, and J P Gazeau, “Coherent States, Wavelets and Their Generalizations”, Springer, Berlin, (2000).
- D F Walls and G J Milburn, “Quantum Optics”, 2nd ed. Springer, Berlin, (2008).
- R J Glauber, “Quantum Theory of Optical Coherences”, Wiley-VCH, (2007).
- B C Sanders, Phys. A: Math. Theor. 45 (2012) 244002 and references therein.
- R J Glauber, Rev. Lett. 10 (1963) 277.
- R J Glauber, Rev. 130 (1963) 2529.
- R J Glauber, Rev. 131 (1963) 2766.
- L C Biedenharn, Phys: Math.Gen. 22 (1989) L873.
- MacFarlane, Phys. A: Math. Gen. 22 (1989) 4581.
- M Daeimohammad, F Kheirandish, and M R Abolhasany, J. Theor. Phys. 48 (2009) 693.
- M Daeimohammad, F Kheirandish, and K Saeedi, J. Theor. Phys. 50 (2011) 171.
- M Daeimohammad, J. Mod. Phys. B, 13 (2019) 1950126.
- V I Manko, G Marmo, S Solimeno and F Zaccaria, J. Mod. Phys. A 8 (1993) 3577.
- V I Man’ko, G Marmo, S Solimeno and F Zaccaria, Lett. A 176 (1993) 173.
- P Aniello, V I Man’ko, G Marmo, S Solimeno and F Zaccaria, Opt. B: Quant. Semiclass. Opt. 2 (2000) 718.
- G Su and M Ge, Lett. A 173 (1993) 17.
- S Ghosh, Math. Phys. 53 (2012) 062104.
- N Amir and S Iqbal, Math. Phys. 55 (2014) 0114101.
- N Amir and S Iqbal, Math. Phys. 56 (2015) 062108.
- O Von Roos and H Mavromatis, Rev. B. 31 (1985) 2294.
- J M Lévy-Leblond, Rev. A. 52 (1995) 1845.
- J R Klauder, Phys. A: Math. Gen. 29 (1996) 293.
- J P Gazeau and J R Klauder, Phys. A: Math. Gen. 32 (1999) 123.
- S Iqbal and F Saif, Math. Phys. 52 (2011) 082105.
- S Iqbal, P Riviére, and F Saif, J. Theor. Phys. 49 (2010) 2340.
- S Iqbal and F Saif, Lett. A. 376 (2012) 1531.
- S Iqbal and F Saif, J. Russ. Laser Res. 34 (2013) 77.
- D Popov, V Sajfert, and I Zaharie, Physica A 387 (2008) 4459.
- A Chenaghlou and O Faizy, Math. Phys. 49 (2008) 022104.
- M Angelova and V Hussin, Phys. A: Math. Gen. 41 (2008) 304016.
- J P Antoine, J P Gazeau, P Monceau, J R Klauder, and K A Penson, J. Math. Phys. 42 (2001) 2349.
- J M Hollingworth, A Konstadopoulou, S Chountasis, A Vourdas, and N B Backhouse, Phys. A: Math. Gen. 34 (2001) 9463.
- R Delbourgo, A Salam, and J Strathdee, Rev. 187 (1969) 1999.
- K Nishijima and T Watanabe, Theor. Phys. 47 (1972) 996.
- D J B Danial and C B Duke, Rev. 152 (1966) 683.
- T Gora and F Williams, Rev. 177 (1969) 1179.
- Q G Zhu and H Kroemer, Rev. B 27 (1983) 3519.
- T Li and K J Kuhn, Rev. B 47 (1993) 12760.
- R Roknizadeh and M K Tavassoly, Math. Phys. 46 (2005) 042110.
- L Mandel, Lett. 4 (1979) 205; L Mandeland, E Wolf, “Optical Coherenceand QuantumOptics”, Cambrige University Press, Cambrige, (1995).
- E Schrödinger, Naturwissenschaften 14 (1926) 664.
- R W Robinett, Rep. 392 (2004) 1.