Document Type : Original Article

Author

Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran

Abstract

The elastic scattering of 16O+16O systems at several incident energies are analyzed, in the framework of double folding model, using the density-dependent averaged effective two-body interaction (DDAEI). The DDAEI is generated via the lowest order constrained variational (LOCV) method for the symmetric nuclear matter (SNM), using the input bare Reid68 nucleon-nucleon (NN) potential. A new energy dependent factor, g(E), is introduced to the LOCV-DDAEI to get a more realistic description of heavy ion (HI) scattering, at the different incident energies. It is shown that a linear energy dependent function, provides a good agreement with the energy dependence of the nuclear optical potential, and causes to increase the convergence speed of iteration method in evaluating the exchange part of folded potential, such that the computing time is considerably decreased. The calculated cross sections of the 16O+16O systems in the above framework, are compared with the available experimental data. It is demonstrated that a quite good description of HI scattering can be obtained, using the above LOCV-DDAEI, by adjusting the parameters of the linear energy dependent factor, g(E).

Keywords

Main Subjects

  1. B Singh, M Bhuyan, S K Patra, and R K Gupta, Phys. G:Nucl. Part. Phys. 39 (2012) 025101.
  2. D T Khoa, et al., Rev. Lett. 74 (1995) 34.
  3. G Bertsch, J  Borysowicz, H  McManus, and W G  Love, Phys. A. 284 (1977) 399.
  4. D T Khoa and W  von Oertzen, Lett. B 304 (1993) 8.
  5. D T Khoa, W  von Oertzen and A A  Ogloblin, Phys. A 602 (1996) 98. ‎
  6. D T Khoa, G R  Satchler and W  von Oertzen, Rev. C 56 (1997) 954.
  7. M Modarres and M  Rahmat, Phys. A 934 (2015) 148.
  8. M Rahmat and M  Modarres, Rev. C 97 (2018) 034611.
  9. M Rahmat and M  Modarres, Phys. A 997 (2020) 121715.
  10. J W Clark, Part. Nucl. Phys. 2 (1979) 89.
  11. J C  Owen, R  F  Bishop, and J M  Irvine, Phys. (NY) 102 (1976) 170.
  12. M Modarres and J M Irvine, Phys. G 5 (1979) 511.
  13. M Modarres and G H Bordbar, Rev. C 58 (1998) 2781.
  14. M Modarres and M Rahmat, Phys. A 903 (2013) 40.
  15. M Modarres and M Rahmat, Phys. A 921 (2014) 19.
  16. M Modarres and M Rahmat, Physica A 466 (2017) 396.
  17. G L Zhang, H Liu, and X Y  Le, Phys. B 18 (2009) 136.
  18. M E Brandan and G R  Satchler, Rep. 285 (1997) 143.
  19. D T Khoa, W  von Oertzen and H G  Bohlen, Rev. C 49 (1994) 1652.
  20. K Amos, et al., Nucl. Phys. 25 (2000) 275.
  21. G R Satchler and W G Love, Rep. 55 (1979) 183.
  22. J W Negele and D Vautherin, Rev. C 5 (1972) 1472.
  23. X Campi and A  Bouyssy, Lett. B 73 (1978) 263.
  24. P Ring and P Schuch, “The Nuclear Many-Body Problem”, Springer-Verlag, New York (1980).
  25. R Baltin, Naturforch. 27A (1972) 1176.
  26. M El-Azab Farid and G R Satchler, Nucl. Phys. A 438 (1985) 525.
  27. D T Khoa, W  von Oertzen, H G  Bohlen, and F Nuoffer, Phys. A 672 (2000) 387 .
  28. I Thompson, fresco.org.uk.
  29. M P Nicoli, et al., Rev. C 60 (1999) 064608.
  30. Y Sugiyama, et al., Lett. B 312 (1993) 35.
  31. E Stiliaris, et al., Lett. B 223 (1989) 291.
  32. H G Bohlen, et al., Phys. A 346 (1993) 189.
  33. G Bartnitzky, et al., Lett. B 365 (1996) 23.

تحت نظارت وف ایرانی