Document Type : Original Article


School of Physics and Accelerators, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14395-836, Tehran, Iran


Electrons of orbitals near to nuclei of heavy atoms acquire speeds comparable to the speed of light in vacuum. Therefore, to study the properties of crystals containing heavy atoms, it is necessary to take into account the relativistic effects. In this work, using the first-principles DFT+U method, we have calculated the electronic structure and geometric properties of uranium dioxide UO2 within full-relativistic, scalar-relativistic, and non-relativistic formulations, and compared the results. It is shown that: (i) the non-relativistic scheme gives results very far form experimental values for both lattice constant and bang gap; (ii) in full-relativistic case which the spin-orbit effects are included, the Kohn-Sham band-gap is increased by 6.2% and the lattice constant decreases by 0.05% compared to scalar-relativistic one. Therefore, in the study of geometric properties of UO2, using the scalar-relativistic regime is quite accurate and one does not need to perform much more expensive full-relativistic calculations whenever one does not study the electronic excitation properties.


Main Subjects

  1. G Amoretti, et al., Rev. B 40 (1989) 1856.
  2. J Faber, G H Lander, and B R Cooper, Rev. Lett. 35 (1975) 1770.
  3. M Idiri, T Le Bihan, S Heathman, and J Rebizant, Rev. B 70 (2004) 014113.
  4. L Y Desgranges, Ph Ma, G Garcia, D Baldinozzi, and H E F Simeone, Chem. 56 (2017) 321.
  5. Y Baer and J Schoenes, Solid State Commun. 33 (1980) 885.
  6. J Schoenes, Appl. Phys. 49 (1978) 1463.
  7. V A Gubanov, A Rosen, and D E Ellis, Solid State Commun. 22 (1977) 219.
  8. S L Dudarev, et al, Physica status solidi (a) 166 (1998) 429.
  9. J Schoenes, Rep. 63 (1980) 301.
  10. S L  Dudarev, D  N  Manh, and A  P  Sutton, Mag. B 75 (1997) 613.
  11. B Dorado, B Amadon, M Freyss, and M Bertolus, Rev. B 79 (2009) 235125.
  12. J T Pegg, X Aparicio-Angles, M Storr, and N H de Leeuw, Nora, Nucl. Materials 492 (2017) 269.
  13. S Sheykhi and M Payami, Physica C: Superconductivity and its Applications 549 (2018) 93.
  14. M S Christian, E R Johnson, and T M Besmann, Phys. Chem. A 125 (2021) 2791.
  15. P Hohenberg and W Kohn, Rev. 136 (1964) B864.
  16. W Kohn and L J Sham, Rev. 140 (1965) A1133.
  17. M Cococcioni and S de Gironcoli, Rev. B 71 (2005) 035105.
  18. B Himmetoglu, A Floris, S de Gironcoli, and M Cococcioni, J. Quantum Chem. 114 (2014) 14.
  19. M Freyss, B Dorado, et al., Scientific Highlight of  The Month 113 (2012).
  20. R A Evarestov, A I Panin, and A V Bandura, Russian J. General Chem. 78 (2008) 1823.
  21. M J T Oliveira and F Nogueira, Phys. Commun. 178 (2008) 524.
  22. D D Koelling and B N Harmon, Phys. C: Solid State Physics 10 (1977) 3107.
  23. P Giannozzi, et. al., Phys.: Condens. Matter 21 (2009) 395502.
  24. P Giannozzi, et. al., Chem. Phys. 152 (2020) 154105.
  25. M P Methfessel and A T Paxton, Rev. B 40 (1989) 3616.
  26. P E Blochl, O Jepsen, and O K. Andersen, Rev. B 49 (1994) 16223.
  27. M Payami, arXiv:2302.04231v1[cond-mat.mtrl-sci] (2023). 
  28. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou, and K Burke, Rev. Lett. 100 (2008) 136406.
  29. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou, and K Burke, Rev. Lett. 102 (2009) 039902.

تحت نظارت وف ایرانی