Document Type : Original Article
Authors
1 Faculty of Science, Department of Physics, Lorestan University, Khoramabad 68151-44316, Iran
2 Department of Materials Science and Engineering, School of Engineering, Meybod University, P.O.Box 89616-99557, Yazd, Iran
Abstract
Scattering matrix formalism is employed to calculate the spin transfer torque in a graphene-based domain wall (DW) in the ballistic regime. We have suggested a new method for manipulating the direction of domain wall motion by both the length of the DW and magnetic barrier that is the ratio of induced exchange field to Fermi energy. It has also shown that spin current density gives us more insight into the transmission of spin-polarized electrons.
Keywords
- scattering matrix formalism
- -spin transfer torque- graphene-based domain wall - the ballistic regime-Landauer Buttiker Formula
Main Subjects
- Zutic, J Fabian, and S Das Sarma, Mod. Phys 76 (2004) 323.
- D Loss and D P Divicenzo, Rev. A 57 (1998) 120.
- P Kumar and A Naeemi, Phys. Lett 121 (2022) 112406.
- K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, and A A Firsov, Science 306 (2004) 666.
- K S Novoselov, A K Geim, S V Morozov, M I Kat- snelson, I V Grigorieva, S V Dubonos, and A A Firsov, Nature 438 (2005) 197.
- Y Zhang, Y -W. Tan , H L Stormer, and P Kim, Nature 438 (2005) 201.
- N Tombros, C Jozsa, M Popinciuc, H T Jonkman, and B J van Wees, Nature 448 (2007) 571.
- N Tombros, S Tanabe, A Veligura, C Jozsa, M Popinciuc, H T Jonkman, and B J Van Wees, Rev. Lett., 101 (2008) 046601.
- M I Katsnelson, K S Novoselov, and A K Geim, Nature Physics 2 (2006) 620.
- M Salehi, R Beiranvand, and M Alidoust, arXiv preprint arXiv:2104., (2021) 09039.
- O V Yazyev, Prog. Phys 73 (2010) 056501.
- H Haugen, D Huertas-Hernando, and A Brataas, Rev. B 77 (2008) 115406.
- S S P Parkin et al., Apply. Phys 85 (1999) 5828.
- L Berger, Rev. B 33 (1986) 1572.
- J C Slonczewski, Magn, Magn. Mater 159 (1996) L1.
- D A Alwood, G Xiong, M D Cooke, C C Faulkner, D Atkinson, N Vernier, and R P Cowburn, Science 296 (2002) 2003.
- D A Alwood, G Xiong, C C Faulkner, D Atkinson, D Petit and R P Cowburn, Science 309 (2005) 1688.
- S S P Parkin, M Hayashi, and L Thomas, Science 320 (2008) 190.
- M Hayashi, L Thomas, R Moriya, C Rettner, and S S P Parkin, Science 320 (2008) 209.
- L Berger, Appl. Phys, 55 (1984) 1954. L Berger, J. Appl. Phys 49 (1978) 2156. L Berger, J. Appl. Phys 71 (1992) 2721. L Berger, Phys. Rev. B 33 (1986) 1572.
- D C Ralph and M D Stiles, Magn. Magn. Mater 320 (2008) 1190.
- C Abert, EPJB 92 (2019) 120.
- S S P Parkin, U. S. Patent 6, 834 (2004) 005.
- E A Golovatski and M E Flatt´’e, Rev. B 84 (2011) 115210.
- V K Dugaev, V R Vieira, P D Sacramento, J Barna´s, M A N Arau´jo, and J Berakdar, Rev. B 74 (2006) 054403.
- M Hayashi, L Thomas, C Rettner, R Moriya, and S S P Parkin, Nature Physics 3 (2007) 21.
- M Calvo, Phys. Rev. B 18 (1978) 5073.
- T Yokayama and J Linder, Rev. B 83 (2011) 081418(R).
- Ping. Niu, New J. Phys. 20 (2018) 1032021.
- M Hayashi, L Thomas, C Rettner, R Moriya , Y B Bazily, and S S P Parkin, Rev. Lett. 98 (2007) 037204.
- S H Abedinpour, G Vignale and I V Tokatly, Rev. B 81 (2010) 125123.
- Gen Tatara, Physica E: Low-dimensional Systems and Nanostructures 106 (2019) 208.
- Ya B Bazaliy, B A Jones, and Shou-Cheng Zhang, Rev. B 57 (1998) R3213(R).
- S Zhang and Z Li, Rev. Lett 93 (2004) 127204.
- N L Schryer and L R Walker, Appl. Phys. 45 (1974) 5406.
- Jiang, Xiao, Gerrit E W Bauer, and Arne. Brataas, Rev. B 77 (2008) 224419.
- I Theodonis, N Kioussis, A Kalitsov, M Chshiev, and W H Butler, Rev. Lett. 97 (2006) 237205.
- Jiang Xiao, A Zangwill, and M D Stiles, Rev. B 73 (2006) 054428.
- H Haugen, D Huertas-Hernando, and A Brataas, Rev. Lett. 77 (2008) 115406.