نوع مقاله : مقاله پژوهشی
نویسندگان
گروه فیزیک، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد
چکیده
در این تحقیق، تقلیل گرانشی تابع موج را که در مکانیک کوانتومی استاندارد بررسی شده است، در چارچوب مکانیک کوانتومی بوهمی مورد مطالعه قرار میدهیم. به عنوان یک نگاه جدید به مسئله، تقلیل تابع موج را با مطالعۀ دینامیک حرکت ذره که در چارچوب کوانتوم بوهمی قابل تعریف است بررسی میکنیم. در این راستا، کمیتهایی مانند جرم بحرانی تقلیل، زمان تقلیل و دمای تقلیل که مشابه با دمای آنرو است، به طور سیستماتیک به دست میآید.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Using Bohmian trajectories in gravitational reduction of the wave function
نویسندگان [English]
- Faramarz Rahmani
- Mehdi Sadeghi
Department of Physics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
چکیده [English]
In this research, we study the gravitational reduction of the wave function, which has been investigated in standard quantum mechanics. As a new look at the problem, we investigate the reduction of the wave function by studying the dynamics of the particle motion, which can be defined in the quantum Bohmian framework. In this regard, quantities such as the critical mass of reduction, reduction time, and reduction temperature, which are similar to the Unruh temperature, are systematically obtained.
کلیدواژهها [English]
- Bohmian quantum mechanics
- quantum potential
- gravitational reduction of the wave function
- wave function reduction
- P A Heelan, “THE OBSERVABLE, Heisenberg’s Philosophy of Quantum Mechanics”, Peter Lang Publishing, Inc., New York (2016).
- M Razavy, “HEISENBERG’S QUANTUM MECHANICS”, World Scientific Publishing Co. Pte. Ltd. (2010).
- D Bohm, Rev. 85, 2 (1952) 166.
- D Bohm, “Wholeness and The Implicate Order”, Routledge & Kegan Paul, (1980).
- D Bohm and B J Hiley, “The undivided universe: An ontological interpretation of quantum theory”, Routledge, (1993).
- P R Holland, “The Quantum Theory of Motion”, Cambridge University Press (1993).
- A Valentini, Physics Letters A 156, 1–2, 3 (1991) 5.
- M Atiq, M Karamian, and M Golshani, Phys. 39 (2009) 33.
- F Rahmani and M Golshani, International Journal of Theoretical Physics 56 (2017) 3096.
- F Károlyházy, Il Nuovo Cimento A (1965-1970) 42 (1966) 390.
- R Penrose, General Relativity and Gravitation 28 (1996) 581.
- R Penrose, Foundations of Physics 44 (2014) 557.
- L Diósi, Physics Letters A 105, 4-5 (1984).
- H Everett, Reviews of Modern Physics 29 (1957) 454.
- Stephen L Adler, “Why decoherence has not solved the measurement problem: a response to P.W. Anderson, Studies in History and Philosophy of Science Part B”, Studies in History and Philosophy of Modern Physics, Volume 34, Issue 1 (2003).
- G Ghirardi, A Rimini, and T Weber, Physical Review. D, Particles and Fields 34, 2 (1986) 470.
- A Bassi, K Lochan, S Satin, T P Singh, and H Ulbricht, Reviews of Modern Physics 85 (2012) 471.
- L Diósi, Physical Review. A, General Physics 40, 3 (1989) 1165.
- F Rahmani, M Golshani, and G Jafari, International Journal of Modern Physics A 33, 22 (2018) 1850129.
- F Rahmani, M Golshani, and G Jafari, Pramana 94 (2020) 1.
- F Rahmani and M Golshani, International Journal of Modern Physics A, 36 26 (2021)
- R G Newburgh, American Journal of Physics 75 (2007) 427.
- M J Lake and B J Carr, High Energ. Phys.2015 (2015) 105.
- R Penrose, “The road to reality: A Compelete Guide to the Laws of Universe”, 1st American ed. New York, A.A. Knopf, (2005).
- L Smolin, International Journal of Theoretical Physics 25 (1986) 215.
- G Hooft, “The Cellular Automaton Interpretation of Quantum Mechanics”, Springer International Publishing : Imprint: Springer (2016).
- F Shojai and M Golshani, International Journal of Modern Physics A 13, 04 (1998) 677.
- Carroll, “On the quantum potential, Fluctuations, Information, Gravity and the Quantum Potential” Theschoolbook.com (2007).