Document Type : Original Article

Authors

Department of laser and optical engineering, University of Bonab, Bonab, Iran

Abstract

In this paper, we theoretically study the generation of double attosecond pulses with the same intensity, a similar carrier-envelope phase, and controllable duration with arbitrary time delay. The desired pulses are generated in a high harmonic generation process on the interaction of a pulsed femtosecond driver laser by asymmetric molecular ion HeH2+. High harmonic generation is investigated by numerical solving the one -dimensional- time dependent Schrödinger equation. To find out the optimized diving laser parameters an appropriate cost function is defined in genetic algorithm. The frequency spectrum of the desired pulses is selected from an appropiate part of high harmonics using a spectral filter. We show that the two mentioned pulses are generated at the time interval of one cycle of the laser electric field of the driving laser when the field direction is antiparallel to the molecule's permanent dipole moment. Finally, by calculating the characteristics of the generated pulses and comparing them with the desired ones, the efficiency of the presented method is fully confirmed.

Keywords

Main Subjects

  1. G Steinmeyer, D H Sutter, L Gallmann, N Matuschek, and U Keller, Science, 286 (1999) 544.
  2. M Nisoli et al., Opt Lett, 22 (1997) 8.
  3. J. Jones et al., Science, 288 (2000) 5466.
  4. Z Chang, “Fundamentals of Attosecond Optics”, CRC Press (2011).
  5. C Gohle et al., Nature, 436 (2005) 7048.
  6. G Sansone et al., Science, 314 (2006) 5798.
  7. Y Jiao, F Wang, X Hong, W Su, and Z Zhang, Lett. A, 378 (2014) 3.
  8. M Lewenstein, P Balcou, M Y Ivanov, A L’Huillier, and P B Corkum, Rev. A 49 (1994) 3.
  9. I P Prokopovich, Laser Phys. Lett. 2 (2005) 5.
  10. I Prokopovich, Laser Phys. 15 (2005) 6.
  11. R A Ganeev, “High order Harmonic Generation in laser Plasma plumes”, Imperial college Press (2013).
  12. M Cherednychek and A Pukhov, Quantum Electronics 46 (2016) 4.
  13. S Mondal et al., Rep. 12 (2022) 1.
  14. X Lavocat-Dubuis, F Vidal, J P Matte, J C Kieffer, and T Ozaki, New Journal of Physics 13 (2011) 2.
  15. A Mak et al., Reports on Progress in Physics 82 (2019) 2.
  16. P M Paul et al., Science 292 (2001) 5522.
  17. P Antoine, A L'Huillier, and M Lewenstein, Rev. Lett. 77 (1996) 7.
  18. Ivanov and P B Corkum, Phys. Rev. Lett. 74 (1995) 15.
  19. H A Navid, R Aghbolaghi, and Z Yarali, Mod. Optics 66 (2019) 17.
  20. Y Hu et al., Zeitschrift für Naturforschung A 77 (2022) 10.
  21. J-X Du, G-L Wang, X-Y Li, Z-H Jiao, S-F Zhao, and X-X Zhou, Rev. A 108 (2023) 2.
  22. A B H Yedder, C Le Bris, O Atabek, S Chelkowski, and A Bandrauk, Rev. A 69 (2004) 4.
  23. Z Chang, Rev. A 76 (2007) 5.
  24. K Kovács and V Tosa, Sci Rep 10 (2020) 1.
  25. J Miao et al., Opt Express 20 (2012) 5.
  26. S Hu and L A Collins, Mod. Optics 54 (2007) 7.
  27. A Baltuška et al., Nature 421 (2003) 6923.
  28. T Popmintchev, et al., Nature Photonics 4 (2010) 12.
  29. P B. Corkum and F Krausz, Nature Physics 3 (2007) 6.
  30. P Lan, P Lu, W Cao, X Wang, and W Hong, Optics Lett. 32 (2007) 9.
  31. P Lan, P Lu, W Cao, Y Li, and X Wang, Rev. A 76 (2007) 2.
  32. X-Y Miao and H-N Du, Rev. A 87 (2013) 5.
  33. X-B Bian and A. D. Bandrauk, Rev. Lett. 105 (2010) 9.
  34. G L Kamta and A. D. Bandrauk, Phys Rev Lett., 94 (2005) 20.
  35. S Majorosi, M G Benedict, and A Czirják, Rev. A 98 (2018) 2.
  36. J Javanainen, J H Eberly, and Q Su, Rev. A 38 (1988) 7.
  37. Q Su and J H Eberly, Rev. A 44 (1991) 9.
  38. A Gordon, R Santra, and F X Kärtner, Rev. A 72 (2005) 6.
  39. H Navid and M Keshavarzi, Mod. Optics 64 (2017) 20.
  40. L Lehtovaara, J Toivanen, and J. Eloranta, Comp. Phys. 221 (2007) 1.

تحت نظارت وف ایرانی