Document Type : Original Article
Author
Department of Physics, Center of Basic Science, Khatam ol-Anbia (PBU) University, Tehran, Iran
Abstract
In this research, we use first-principles calculations based on density functional theory (DFT) to investigate the electro-optical performance of a three-dimensional T-carbon nanostructure. In addition to analyzing the dynamic and static stability of the optimized structure of the T-carbon unit cell, as new research, the electro-optical properties of T-carbon, under the effect of omnidirectional hydrostatic stress on the unit cell up to 9 GPa, were simulated by using computational codes. The obtained results indicate the acceptable performance of this nanostructure as a suitable optical absorbent material. This three-dimensional nanostructure can be used to design innovative components such as electro-optical sensors, light intensifiers, optical detectors, and organic perovskite solar cells.
Keywords
- density function theory
- carbon allotrope
- three-dimensional T-carbon nanostructure
- electro-optical properties
Main Subjects
- K S Novoselov, et al., Science 306 (2004) 666.
- S Okada, Rev. B 77 (2008) 041408.
- K S Novoselov, et al., Nature 438 (2005)
- S Balendhran, et al., Small 11 (2015) 640.
- S Zhang, et al., Nano Lett. 17 (2017) 3434.
- H Althib, et al., Mater. Sci. 44 (2021) 254.
- A Lopez-Bezanilla and P B Littlewood, Phys. Chem.C 119 (2015)19469.
- M Benidris, et al., Mater. Sci. 44 (2021) 221.
- S Yalameha, et al., 2021 Sci. Eng. B 273 (2021) 115430.
- H Alborznia, et al., Optik 180 (2019) 125.
- H Alborznia, et al., Res. Many. Sys. 11 (2021) 1.
- S Y Wakhare and M D Deshpande, Mater. Sci. 42 (2019) 206.
- H R Alborznia and S T Mohammadi, Mater. Sci. 44 (2021) 180.
- F A Celik Mater. Sci. 45 (2022) 108.
- H R Alborznia and S T Mohammadi, J. Phys. Res. 20 (2020) 259.
- H Alborznia and S T Mohammadi, Indian J. phys. 32 (2022) 2.
- H Alborznia, J. Mod. Phys. B. 38 (2024) 2450085.
- B Ram and H Mizuseki, Carbon 137 (2018) 266.
- D M Hoat, et al., Indian J. Phys 95 (2021) 2365.
- H Alborznia, et al., Superlattice Microstruct. 133 (2019) 106217.
- H Alborznia, Rev. Lett. 29 (2022) 2250078.
- X-L Sheng, et al., Rev. Lett. 106 (2011) 155703.
- W Jia-Qi, et al., Phys. Condens. Matter 28 (2016) 475402.
- P Blaha, et al., “An augmented planeWave+local orbitals program for calculating crystal properties WIEN2k 13.1”, Wien2K users guide, (2013) ISBN 3-9501031-1-2J.P.
- J P Perdew, et al., Rev. Lett.77 (1996) 3865.
- H J Monkhorst and J D Pack, Rev. B 13 (1976) 5188.
- H Ehrenreich and M H Cohen, Rev. 115 (1959) 786.
- F Birch, Geophys. Res.: Solid Earth 91 (1986) 4949.
- M C Abt, et al., B: Condens. Matter 194–196 (1994) 1451.
- N J Jeon, et al., Mater. 13 (2014) 897.