Document Type : Original Article

Authors

Department of Physics, Shahid Beheshti University, Tehran, Iran

Abstract

Digital holographic Microscopy is a non-destructive and label-free method that provides quantitative phase information in biological and industrial applications. High coherence light sources, such as lasers, are commonly used in digital holographic microscopes. Parasitic -interference fringes and speckle noise in high-coherence sources as well as complex configurations reduce the accuracy of the phase measurements. In this paper, a common-path and low-coherence digital holographic microscopy with a Fourier transform-based spectroscopy is introduced. The low-coherence source used here is an LED and the common path configuration is used based on splitting the wavefront by Fresnel biprism. Reconstruction of the hologram is analyzed using the Fourier method. In addition, The spectral line shape of the LED is obtained simultaneously with the Fourier transform of the visibility of the recorded fringes. The ability to simultaneously perform quantitative phase imaging and Fourier transform spectroscopy makes this system unique in the real-time study of biological samples in micron size.

Keywords

Main Subjects

  1. W Choi, C Fang-Yen, K Badizadegan, S Oh, N Lue, R R Dasari, and M S Feld, Methods 4 (2007) 717.
  2. V Singh, S Tayal, and D S Mehta, OSA Contin. 1 (2018) 48.
  3. P Marquet, et al., Lett. 30 (2005) 468.
  4. M K Kim, SPIE Reviews 1 (2010) 018005.
  5. Meng, et al., J. Opt. Soc. Am. A 10 (1993) 2046.
  6. J C Dainty ed. Springer Science & Business Media, (2013).
  7. J Garcia-Sucerquia, J A H Ramírez, and D V Prieto, Optik116 (2005) 44.
  8. M León-Rodríguez, et al., JOSA 29 (2012) 498.
  9. M C Potcoava and M K Kim, Opt. 48 (2009) H9.
  10. S Shin, et al., Lett. 40 (2015) 5407.
  11. F Dubois, L Joannes, and J C Legros, Opt. 38 (1999) 7085.
  12. Y Mori and T Nomura, Opt. 52 (2013) 3838.
  13. J Garcia-Sucerquia, Opt. 52 (2013) A232.
  14. M Joglekar, et al., Express 30 (2022) 29234.
  15. K Tajbakhsh, S Ebrahimi, and M Dashtdar, Opt61 (2022) 398.
  16. P Girshovitz and N T Shaked, Light Sci. Appl. 3 (2014) e151.
  17. P Hosseini, et al.,Lett. 30 (2016) 1656.
  18. B Kemper, et al., (2011). Biomed. Opt. 16 (2011) 026014.
  19. N T Shaked, Lett. 37 (2012) 2016.
  20. P Bon, et al., Express 17 (2009) 13080.
  21. J Di, et al., Opt. 55 (2016) 7287.
  22. S Ebrahimi, et al., Phys. Lett. 11(2018).
  23. S Ebrahimi and M Dashtdar, Phys. Lett. 20(2019) 115.
  24. S Ebrahimi and M Dashtdar, Lett. 46 (2021) 3516.
  25. W Demtröder, Laser spectroscopy, vol. 2 (Springer, 1973).
  26. B H  Bransden and C. J. Joachain, Phy. Atom. Mol, 2nd ed. (Pearson, 2003).
  27. M H Niemz, “Laser-tissue interactions” (Springer -Verlag, 2007).
  28. P N Prasad, “Introduction to biophotonics” (John Wiley & Sons, 2004).
  29. D W Ball, Field guide to spectroscopy, vol. 8 (Spie Press Bellingham, Washington, 2006)
  30. G A Vanasse and H Sakai, “Vii fourier spectroscopy,” in Progress in Optics, vol. 6 (Elsevier, 1967), pp. 259–330.
  31. J C Albergotti, J. Phys. 40 (1972) 1070.
  32. A Jabbari, K Hassani, and M T Tavassoly, Opt. 58 (2019) 5353.
  33. D Malacara, “Optical shop testing”, vol. 59 (John Wiley & Sons, 2007).
  34. A Anand, V K Chhaniwal, and B Javidi, Dis. Technol. 6 (2010) 500.

تحت نظارت وف ایرانی