Document Type : Original Article

Authors

1 Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Zanjan, Iran

2 Islamic Azad University, Qazvin Branch, Department of Physics, Qazvin, Iran

Abstract

In this paper, the time evolution of quantum coherence and Hilbert-Schmidt speed, as a criterion to measure the memory of the quantum system, of a V-type three-level atom embedded in an anisotropic photonic crystal are investigated. The effect of the different relative positions of the upper levels from the forbidden gap and the initial relative phase values on the mentioned quantum features are studied. We show that the photonic band gap crystal, as a structured environment, significantly influences the preservation and enhancement of these quantum features. The photonic gap band materials have non-Markovian properties and offer a new approach as a basic solution in overcoming the decoherence problem and subsequently in problems related to quantum information.

Keywords

Main Subjects

  1. Y Ting and J H Eberly, Rev. Lett.93 (2004) 140404.
  2. Y Ting and J H Eberly,  Rev. Lett. 97 (2006) 140403.
  3. J H Eberly and T Yu, Science316, 5824 (2007) 555.
  4. Y Ting and J H Eberly, Science323 (2009) 598.
  5. C Radhakrishnan, et al., Rev. Lett. 116 (2016) 150504.
  6. Y Yao, et al., Rev. A 92 (2015) 022112.
  7. V Giovannetti, S Lloyd, and L Maccone., photonics 5 (2011) 222.
  8. G Naeimi, S Khademi, and O Heibati, Sch. Res. Notices 2013(2013) 1.
  9. M A Nielsen and I L Chuang, “Quantum computation and quantum information”, Cambridge Univ Press, (2000).
  10. D Bouwmeester, et al., Nature 390 (1997) 575.
  11. J M Arrazola and N Lütkenhaus, Rev. A 90 (2014) 042335.
  12. P Kammerlander and J Anders, Sci. Rep. 6 (2016)
  13. G Gour, PRX Quantum3 (2022) 040323.
  14. S H Zeng, et al., Quantum Inf. Process.18 (2019) 378.
  15. Y L L Fang, F Ciccarello, and H U Baranger, New J. Phys. 20, 4 (2018) 043035.
  16. M Carrera, T Gorin, and C Pineda, Phys. Rev. A 100, 4(2019)
  17. H P Breuer, et al., Mod. Phys.88 (2016) 021002.
  18. L Li, M J Hall, and H M Wiseman,  Rep.759 (2018) 1.
  19. S Alipour, M Mehboudi, and A Rezakhani, Rev. Let. 112 (2014) 120405.
  20. R S Bennink and P Lougovski, New J. Phys. 21 (2019) 083013.
  21. Á Rivas, S F Huelga, and M B Plenio,  Rev. Lett.105, 5 (2010) 050403.
  22. H R Jahromi, et al., Rev. 102 (2020) 022221.
  23. E M Laine, J Piilo, and H P Breuer,  Rev. A 81, 6 (2010) 0621
  24. K Mahdavipour, et al., Entropy24 (2022) 395.
  25. J A Cina and G R Fleming, Phys. Chem. 108 (2004) 11196.
  26. S R Entezar, s Lett. 373 (2009) 3413.
  27. S R Entezar,  Phys. B: At. Mol. Opt. Phys.43 (2010) 085503.
  28. M Abazari, et al., Entropy13 (2011) 1541.
  29. N N Yousefi, et al., Rev. 105 (2022) 042212.
  30. E Yablonovitch, Phys. Condens. Matt.5 (1993) 2443.
  31. C M Soukoulis, “Photonic band gap material’s” Springer Science & Business Media (2012).
  32. E Yablonovitch, Rev. Lett. 58 (1987) 2059.
  33. S John and J Wang,  Rev. Lett. 64 (1990) 2418.
  34. S John and J Wang, Rev. B43 (1991) 12772.
  35. S John and T Quang, Rev. Lett. 74 (1995) 3419.
  36. B M Garraway and P L Knight, Rev. 54 (1996) 3592.
  37. M Lewenstein, T W Mossberg, and R J Glauber,  Rev. Lett. 59 (1987) 775.
  38. S Bay, P Lambropoulos, and K Mølmer, Rev. Lett. 79 (1997) 2654.
  39. K M Ho, C T Chan, and C M Soukoulis, Rev. Lett. 65 (1990) 3152.
  40. K S Kumar, et al., commun. 7 (2016) 10628.
  41. B P Lanyon, et al., Rev. Lett. 100(2008) 060504.
  42. M Woldeyohannes and S John, Opt. B: Quantum Semiclass. Opt. 5, 2(2003) 42.
  43. S Y Xie, Y P Yang, And X Wu, Phys. J. D At. Mol. Opt. Plas. Phys. 13(2001)129.
  44. M A Woldeyohannes, D. Thesis, University of Toronto (2001).
  45. S Yuan Xie, et al., Phys. Lett. 17 (2000) 20.
  46. J Xie, et al., Geol. Rev.51 (2009) 388.
  47. A G Kofman, G Kurizki, and B Sherman,  Mod. Opt.41 (1994) 353.
  48. N Vats, S John, and K Busch, Rev. 65 (2002) 043808.
  49. M Rastegarzadeh and M K Tavassoly, Phys. B 30, 3(2021)034205.
  50. AStreltsov, G Adesso, and M B Plenio, Mod. Phys.89 (2017) 041003.
  51. A Mortezapour, G Naeimi, and R L Franco, Commun.424 (2018) 26.
  52. A Mortezapour and S Karami, Iran. J. Phys. Res. 18, 4 (2019) 603.
  53. T Baumgratz, M Cramer, and M B Plenio,  Rev. Lett.113 (2014) 140401.
  54. A Streltsov, et al., Rev. Lett.115 (2015) 020403.
  55. C Wolff and K Busch, "Non-Markovian Radiation Dynamics in Photonic Band Gap Materials," in CLEO:

 2013, OSA Technical Digest (online) (Optica Publishing Group, 2013), paper JM3A.4.

  1. U Hoeppe, et al., Rev. Lett.108 (2012) 043603.
  2. S Golkar and M K Tavassoly, Phys. B 27, 4 (2018) 040303.
  3. S Golkar and M K.Tavassoly, Phys. Lett. A 34, 10(2019) 1950077.
  4. Gh Ahmadi, S Saeidian, and G Naeimi, arXiv 2312 (2023) 09910.
  5. J D Jasmina, M Arsenijević, and M Dugić, J. Phy. 53 (2023) 58.
  6. B Bihalan and S Bhattacharya, Quantum Inf. Process. 20 (2021) 1.

 

 

تحت نظارت وف ایرانی