نوع مقاله : مقاله پژوهشی
نویسنده
دانشکده فیزیک، دانشگاه تحصیلات تکمیلی علومپایه زنجان، گاوازنگ، زنجان
چکیده
برهمکنش دوقطبی در توصیف پدیدههای متنوعی نقش ایفا میکند. تحلیل سامانهای بسذرهای با برهمکنش دوقطبی به دلیل ویژگیهای برداری، ناهمسانگرد و بلندبرد این برهمکنش دشوار است. در این مقاله، رهیافتی تانسوری برای مطالعۀ برهمکنش دوقطبی به کار گرفته میشود که اجازه میدهد، سهم جهتگیری و مکان دوقطبیها از هم تفکیک شوند. به کمک این رهیافت میتوان در تقریب میدان میانگین نشان داد در آرایۀ دوبعدی منظم از نانوذرات مغناطیسی تحت تأثیر برهمکنش دوقطبی، گذارفاز پیوسته مغناطیسی رخ میدهد. این گذار فاز برای نانوذراتی که در یک بافت کشسان قرارگیرند پیچیدهتر است. چنین سامانهای از دیدگاه زیستی اهمیت دارد. رهیافت تانسوری برای تحلیل آرایۀ منظم کشسان از دوقطبیها نیز به کار میآید. نتایج نشان میدهد کرنش در بافت کشسان در جهتی است که نظم برآمدۀ مغناطیسی را در مقابل افتوخیز گرمایی پایدارتر میکند. هرچند این پایداری، حساسیت و اثرپذیری سامانه در نقطۀ بحرانی نسبت به میدان مغناطیسی خارجی را کاهش نمیدهد و کماکان در نقطۀ بحرانی سامانه نسبت به میدان مغناطیسی خارجی بینهایت پذیرفتار میماند. چنین ویژگی میتواند از نظر زیستی اهمیت داشته باشد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Emergent order in the orientation of localized dipoles in a two-dimensional elastic array
نویسنده [English]
- Mohammad Dehghan Niry
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
چکیده [English]
Dipolar interaction plays a significant role in describing various phenomena. Analyzing a many-body system with dipolar interaction is challenging due to the vector, anisotropic, and long-range characteristics of this interaction. In this paper, a tensor approach is used to study dipolar interaction, allowing the contribution of orientation and the location of dipoles to be separated. With this approach, it can be shown that in mean-field theory, a continuous magnetic phase transition occurs in an ordered two-dimensional array of magnetic nanoparticles under the influence of dipolar interaction. However, this phase transition becomes more complex when nanoparticles are embedded in elastic tissue. Such a system is crucial from a biological view. The tensor approach is also applicable for analyzing the elastic array of dipoles. The results show that the strain in the elastic tissue aligns with magnetic order in a way that further stabilizes the emergent magnetic order against thermal fluctuations. Although this stability does not reduce the system’s sensitivity to even the smallest external magnetic field at the critical point, and the system remains infinitely susceptible to an external magnetic field. This feature could be biologically important.
کلیدواژهها [English]
- dipolar interaction
- continuous phase transition
- coupling tensor
- elastic media
- E Rastelli, S Regina, and A Tassi, Rev. B 73 )2006(144418.
- R Kretschmer and K Binder, Zeitschrift für Physik B Matt. 34 )1979(375.
- K De’Bell, A B MacIsaac, and J P Whitehead, Mod. Phys. 72 )2000( 225.
- D Kechrakos and K N Trohidou, Nanosci. Nanotechno. 8 (2008) 2929-2943.
- H Zhang and M Widom, Rev. E 49 (1994) R3591.
- J M Luttinger and L Tisza, Rev. 70 (1946) 954.
- M S Wertheim, Chem. Phys. 55 (1971) 4291.
- M Khoddam, et al., Rev. E 98 (2018) 032133.
- S Karmakar, et al., Phys. 292 (2011) 012002.
- X Sun, Y Huang, and D E Nikles, J. Nanotechnol. 1 (2004) 328.
- L Peixoto, et al., Phys. Rev. 7 (2020) 011310.
- G Ising, Mat. Astron. Fys. 32 (1945) 1-23.
- R Blakemore, Science 190 (1975) 377.
- J L Kirschvink, A Kobayashi-Kirschvink, and B J Woodford, Natl. Acad. Sci. 89 (1992) 7683.
- D Faivre and D Schüler, Chem. Rev. 108 (2008) 4875.
- S Johnsen and K J Lohmann, Today 61 (2008) 29.
- S Johnsen and K J Lohmann, Rev. Neurosci. 6 (2005) 703.
- E Hand, Science 352 (2016) 1509.
- M I R Brodbeck, J. Neurosci. 57 (2023) 1779.
- M Barinaga, Science 256 (1992) 967.
- S Begall, et al., Natl. Acad. Sci. 105 (2008) 13451.
- H Burda, et al., Natl. Acad. Sci. 106 (2009) 5708.
- J Hert, Comp. Physiol. A 197 (2011) 677.
- S Begall, et al., Comp. Physiol. A 197 (2011) 1127.
- P Slaby, K Tomanova, and M Vacha, Comp. Physiol. A 199 (2013) 695.
- S Begall, et al., Biol. 78 (2013) 10.
- R A. Wever, ‟The circadian system of man”, Springer (1979).
- R A Wever, ‟A book chapter in Electromagnetic fields and circadian rhythmicity”, Springer (1992).
- C X Wang, et al., eNeuro, 6 (2019) 1.
- S A Gilder, et al., Rep.-UK, 8 (2018) 11363.
- B A Mahera, et al., Natl. Acad. Sci. 113 (2016) 10797.
- S Khan and D Cohen, Brain Mapp. 40 (2018) 1654.
- K J Lohmann, Nature, 464 (2010) 1140.
- J Shaw, et al., R. Soc. Interface, 12 (2015) 1.
- H Mouritsen, Nature, 558 (2018) 50.
- Z Sheidaafar, Master's thesis, Institute for Advanced Studies in Basic Sciences (2016) (In persian).
- Bolhasani, Master's thesis, Institute for Advanced Studies in Basic Sciences (2022) (In persian).
- A Rezapoor, Master's thesis, Alzahra University (2023) (In Persian).
- S Friedli and Y Velenik, ‟Statistical mechanics of lattice systems”, Cambridge University Press (2018).
- A Weltman, J Yoo, and E Meng, Micromachines 7 (2016) 180.
- I Goychuk, Rev. E 92 (2015) 042711.