Document Type : Original Article

Author

Faculty of Science, Razi University, Kermanshah, Iran

Abstract

The exclusive decays of the Higgs boson into  and  mesons are being studied using the fragmentation approach. One of the dominant modes of the Higgs boson decay in the Standard Model is its decay into  pairs, which then directly decay into   and  mesons. In this article, the branching ratio and decay widths of the SM Higgs boson to the  and  mesons have been calculated by directly fragmenting the anti-quark  within the framework of perturbative Quantum Chromodynamics (pQCD) at leading order (LO). The results of these calculations are in very good agreement with those obtained by other authors.

Keywords

Main Subjects

  1. G Aad, et al., Phys. Lett. B 716 (2012) 1.
  2. S Chatrchyan, et al., Phys. Lett. B 716 (2012) 30.
  3. G Aad, et al., J. High Energy Phys. 08 (2015) 137.
  4. M Aaboud, et al., Phys. Lett. B 786 (2018) 14.
  5. A M Sirunyan, et al., Phys. Lett. B 791 (2019) 96.
  6. G. Aad, et al., J. High Energy Phys. 08 (2016) 045.
  7. M Aaboud, et al., Phys. Lett. B 784 (2018) 173.
  8. A M Sirunyan, et al., Phys. Rev. Lett. 120 (2018) 231801.
  9. M Aaboud, et al., Phys. Lett. B 786 (2018) 59.
  10. A M Sirunyan, et al., Phys. Rev. Lett. 121 (2018) 121801.
  11. A M Sirunyan, et al., Eur. Phys. J. C 79 (2019) 421.
  12. G Aad et al., Phys. Rev. D 101 (2020) 012002.
  13. Y Noguchi, J. Phys. Conf. Ser. 1390 (2019) 012046.
  14. A M Sirunyan et al., Phys. Lett. B 779 (2018) 283.
  15. M Cepeda, et al., CERN Yellow Rep. Monogr. 7 (2019)221.
  16. J Da Costa et al., https://doi.org/10.48550/arXiv.1811.10545.
  17. H Baer, et al., https://doi.org/10.48550/arXiv.1306.6352.
  18. A Abada, et al., Eur. Phys. J. 228 (2019) 261.
  19. J de Blas, et al., https://doi.org/10.48550/arXiv.2203.07261.
  20. K M Black, ` et al., https://doi.org/10.48550/arXiv.2209.01318.
  21. C F Qiao, F Yuan, and K T Chao, J. Phys. G 24 (1998) 1219.
  22. G T Bodwin, Phys. Rev. D 88 (2013) 053003.
  23. G T Bodwin, Phys. Rev. D 90 (2014) 113010.
  24. M König and M Neubert, J. High Energy Phys. 08 (2015) 012.
  25. C Zhou, Chin. Phys. C 40 (2016) 123105.
  26. T Modak, Phys. Rev. D 94 (2016) 075017.
  27. G T Bodwin, Phys. Rev. D 95 (2017) 054018.
  28. G T Bodwin, Phys. Rev. D 95 (2017) 054018, Phys. Rev. D 96 (2017) 116014.
  29. Q F Sun and A M Wang, Chin. Phys. C 42 (2018) 033105.
  30. Q L Liao, et al., Phys. Rev. D 98 (2018) 036014.
  31. N Brambilla, et al., Phys. Rev. D 100 (2019) 054038.
  32. S Mao, et al., J. Phys. G 46 (2019) 105008.
  33. Q L Liao and J Jiang, Phys. Rev. D 100 (2019) 053002.
  34. Z Sun and Y Ma, Phys. Rev. D 100 (2019) 094019.
  35. X A Pan, et al., Phys. Rev. D 105 (2022) 014032.
  36. T Han, et al., J. High Energy Phys. 08 (2022) 073.
  37. D N Gao and X Gong, Phys. Lett. B 832 (2022) 137243.
  38. A Batra, S Mandal and R Srivastava, https://doi.org/10.48550/arXiv.2209.01200.
  39. J Jiang and C F Qiao, Phys. Rev. D 93 (2016) 054031.
  40. R N Faustov, F A Martynenko and A P Martynenko, Eur. Phys. J. A 58 (2022) 4.
  41. I N Belov, et al., Nucl. Phys. A 1015 (2021) 122285.
  42. R N Faustov, A P Martynenko and F A Martynenko, Phsy. Rev. D 107 (2023) 056002.
  43. J J Niu, et al., Eur. Phys. J. C 79 (2019) 339.
  44. Xu-Chang Zheng, et al., Phys. Rev. D 107 (2023) 074005.

45. T Osati, IJAP 12, 29 (2022) 22(Persian).46. T Osati, JONSAT 44, 103(2023)1 (Persian).

  1. A M Sirunyan, et al., (The CMC Collaboration), Phys. Lett. B 797 (2019) 134826.
  2. M Suzuki, Phys. Rev. D 33(1986) 676.
  3. E Bratten, T C Yuan, Phys. Rev. Lett. 71 (1993) 1673.
  4. E Bratten, K C Cheung, and T C Yuan, Phys. Rev. D 48 (1993) 5049.
  5. E Bratten, K C Cheung, and T C Yuan, Phys. Rev. D. 48 (1993) 4230.
  6. M A Gomshi Nobary and R Sepahvand, Phys. Rev. D 71 (2005) 034024.
  7. M A Gomshi Nobary and R Sepahvand, Nucl. Phys. B 741 (2006) 34.
  8. R Sepahvand and S Dadfar, Phys. Rev. D 95 (2017) 034012.
  9. R Sepahv and S Dadfar, Nucl. Phys. A 960 (2017) 36.
  10. G R Boroun, T Osati, snd S. Zarrin, IJTP 54 (2015) 3831.
  11. M A Gomishi Nobary and T Osati, Mod. Phys. Lett. A, 15, 7 (2000) 455.
  12. V Bertone, et al., Eur. Phys. J. C 77 (2017) 516.
  13. D P Anderle, F Ringer, and M Stratmann, Phys. Rev. D 92 (2015) 114017.
  14. J J Ethier, N Sato, and W Melnitchouk, Phys. Rev. Lett. 119 (2017) 132001.
  15. S M M Nejad and P Sartipi Yarahmadi, Eur. Phys. J. A 52 (2016) 315.
  16. E R Nocera and M Ubiali, https://doi.org/10.48550/arXiv.1709.09690.
  17. T J Hou, et al., J. High Energy Phys. 02 (2018) 059.
  18. K J Eskola, et al., Eur. Phys. J. C 77 (2017) 163.
  19. L Frankfurt, V Guzey, and M Strikman, Phys. Rev. C 95 (2017) 055208.
  20. M Goharipour and H Mehraban, Phys. Rev. D 95 (2017) 054002.
  21. R Slovak, Nucl. Phys. A 967 (2017) 504.
  22. D P Anderle, et al., Phys. Rev. D 96 (2017) 034028.
  23. A MSirunyan, et al.,(The CMC Collaboration), Phys. Lett. B 797 (2019) 134811.
  24. E Braaten and J P Leveille, Phys. Rev. D 22 (1980) 715.
  25. N Sakai, Phys. Rev. D 22 (1980) 2220.
  26. S G Gorishnii, et al., Mod. Phys. Lett. A 05 (1990) 2703.
  27. A L Kataev and V T Kim, Mod. Phys. Lett. A 09 (1994) 1309.
  28. L R Surguladze, Phys. Lett. B 341 (1994) 60.
  29. S A Larin, T van Ritbergen, and J A M Vermaseren, Phys. Lett. B 362 (1995) 134.
  30. K G Chetyrkin and A Kwiatkowski, Nucl. Phys. B 461 (1996) 3.
  31. K G Chetyrkin, Phys. Lett. B 390 (1997) 309.
  32. P A Baikov, K G Chetyrkin, and J H Kuhn, Phys. Rev. Lett. 96 (2006) 012003.
  33. R Mondini, M Schiavi, and C Williams, J. High Energy Phys. 06 (2019) 079.
  34. S Navaset, et al., Phys. Rev. D 110 (2024) 030001.
  35. D de Florian, et al., (Higgs Cross Section Working Group), https://doi.org/10.48550/arXiv.1610.07922
  36. W Chou, et al.,([CEPC Study Group), https://doi.org/10.48550/arXiv.1809.00285.
  37. F Simon, PoS ICHEP 2012 (2013)066.

ارتقاء امنیت وب با وف ایرانی