Document Type : Original Article

Author

Physics Department, Sirjan University of Technology, Sirjan, Iran

Abstract

In this paper, we investigate a system composed of disk-shaped particles with a square cross-section (D*D ) and thickness L, confined between two hard walls separated by a distance H. Employing Onsager theory and the Zwanzig approximation, we demonstrate that the isotropic-nematic phase transition of these particles weakens and eventually disappears as the wall separation decreases. Our findings exhibit qualitative agreement with previous studies. Furthermore, we show that particles with approximate aspect ratio L/D=0.2 undergo a first-order phase transition from a 2H-1P phase to a 4H-1P phase for specific wall separations. This phase transition terminates at two critical points and occurs at lower densities as the wall separation increases within the coexistence region. The characteristic phase transition vanishes as the aspect ratio deviates from L/D=0.2 .

Keywords

Main Subjects

  1. L Bellier-Castella, D Caprion, J P Ryckaert, Chem. Phys. 121 (2004) 4874.
  2. J A C Veerman, D Frenkel, Rev. A. 45 (1992) 5632.
  3. R Aliabadi, M Moradi, and S Varga, Chem. Phys. 144 (2016) 074902.
  4. S Mizani, et al., Rev. E. 100 (2019) 032704.
  5. L Onsager, N. Y. Acad. Sci. 51 (1949) 627.
  6. H Zocher, Und Allg. Chemie. 147 (1925) 91.
  7. F C Bawden, et al., Nature. 138 (1936) 1051.
  8. K Coper and H Freundlich, Faraday Soc. 33 (1937) 348.
  9. H Reich and M Schmidt, Phys. Condens. Matter. 19 (2007) 0326103.
  10. A Malijevský and S Varga, Phys. Condens. Matter. 22 (2010) 175002.
  11. H Salehi, et al., Rev. E. 98 (2018) 032703.
  12. M Moradi, R J Wheatley, and A Avazpour, Phys. Condens. Matter. 17 (2005) 5625.
  13. D de Las Heras, E Velasco, and L Mederos, Chem. Phys. 120 (2004) 4949.
  14. Zwanzig, J. Chem. Phys. 39 (1963) 1714.
  15. D Frenkel and R Eppenga, Rev. Lett. 49 (1982) 1089.
  16. R Aliabadi, M Moradi, and S Varga, Rev. E 92 (2015) 032503.
  17. R Aliabadi, et al., Rev. E. 97 (2018) 012703.
  18. K Shundyak and R van Roij,  Rev. E 69 (2004) 041703.
  19. P Gurin, G Odriozola, and S Varga, New J. Phys. 23 (2021) 063053.
  20. R Aliabadi, S Nasirimoghadam, and H H Wensink, Rev. E. 107 (2023) 054117.
  21. H Hansen-Goos and K Mecke, Rev. Lett. 102 (2009) 18302.
  22. H Hansen-Goos and K Mecke, Phys. Condens. Matter. 22 (2010) 364107.
  23. H Reich, et al., Phys. Chem. B. 111 (2007) 7825.
  24. J C P Gabriel and P Davidson, Colloid Chem. I (2003) 119.
  25. J P F Lagerwall, et al., NPG Asia Mater. 6 (2014) e80.
  26. M Schoen and M Schoen, Chem. Phys. 7 (1996) 2910.
  27. M Schoen, et al., Chem. Phys. 88 (1988) 1394.
  28. B Ruzicka, et al., Mater. 10 (2011) 56.
  29. E Meneses-Juarez, et al., Soft Matter 9 (2013) 5277.
  30. L Mederos, E Velasco, and Y Martínez-Ratón, Phys. Condens. Matter 26 (2014) 463101.
  31. J K Kim, et al., Phys. Lett. 95 (2009) 63505.

ارتقاء امنیت وب با وف بومی