Document Type : Original Article

Authors

Physcs faculty, Semnan University, Semnan, Iran

Abstract

In the present work, we proposed an approach to estimate the depth of shower maximum of extensive air showers detected with radio arrays using the least squares method based on comparing the detected signal intensity of the east-west component of the electric field vector from secondary particles with the intensity of the simulated signals in the data bank. The simulations are specifically performed for Semnan University Radio Array (SURA). Using the described method, we evaluated the error dependence of this approach on the primary characteristics of cosmic rays. The presented method can estimate the depth of shower maximum of vertical proton-initiated cosmic rays in the energy range of 100 to 500 PeV with a resolution better than 20.42 . The error can be decreased by knowing the energy of the primary particle. We evaluated the impact of the accuracy of determining the zenith angle, the core location, and the mass of the primary particle on the depth of shower maximum estimation.

Keywords

Main Subjects

  1. J Jelley, et al., Nature 205 (1965) 327.
  2. H R Allan, Element. Part. Cosmic Ray Phys. 10 (1971) 169.
  3. G A Askaryan, Phys. Soc. Japan 14 (1962) 441.
  4. G A Askaryan, J. Phys. Soc. Japan 21 (1965) 658.
  5. T Huege, M Ludwig and C W James, AIP Conference Proceedings, American Institute of Physics. (2013)
  6. D Heck, et al., “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers”, FZKA Report 6019, Forschungszentrum Karlsruhe (1998).
  7. H Falcke, et al., Nature 435 (2005) 313.
  8. D Ardouin, et al., Instrum. Methods Phys. Res. A 555 (2005) 148.
  9. K D de Vries, et al., Phys. 34 (2010) 267273.
  10. P Schellart, et al., Astrophys. 560, (2013) A98.
  11. J Schulz, Proceedings of the 34th ICRC, The Hague, The Netherlands, PoS (2015).
  12. P A Bezyazeekov, et al., Methods Phys. Res. Sect. A: Detect. Assoc. Equip. 802 (2015) 89.
  13. G Rastegarzadeh and M Nemati, J. Phys. Res.10, 1 (2010) 47.
  14. G Rastegarzadeh and S Khoshabadi, J. Modern Phys. D24, 10 (2015) 1550080.
  15. W D Apel, et al., “Phys. Rev D 85 (2012) 071101.
  16. A Aminaei, et al., Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013) 3358.
  17. G Rastegarzadeh and M Sabouhi, Astro. 49 (2020) 21.
  18. M Sabouhi, G Rastegarzadeh, and H Meghdadi, Astrophys. Astron. 43, 2 (2022) 56.
  19. Ostapchenko, Nuclear Phys. B Proc. Suppl. 151, 1 (2006) 143.
  20. S F Aghajanpour, M Sabouhi and G Rastegarzadeh, Proceedings of the 14th National conference on Astronomy and Astrophysics (2021).
  21. F Latifian and G Rastegarzadeh, Proceedings of the 17th National Conference on Astronomy and Astrophysics (2024).
  22. E Lofgren, et al., Rev. 74,2 (1948) 213.
  23. B Peters, et al., Rev. 74,12 (1948) 1828.

ارتقاء امنیت وب با وف بومی