Document Type : Original Article
Authors
Faculty of Physics, Yazd University, University Blvd. - Safayieh - Yazd
Abstract
In many models beyond the standard model (SM), the Lorentz invariance violation of physical phenomena is allowed. Various processes have yet been investigated to study the effect of Lorentz violation and some upper limits have been specified for the Lorentz violation (LV) coefficients. A specific process, which is less considered, is the decay of polarized top quark. According to the SM of particle physics, the top quark in the cascade process decays so in the following the W-boson decays into a lepton and its neutrino ( ). In this paper, through the study of polarized top quark decay rate we shall investigate the azimuthal correlation contribution between the event plane and polar plane (including the top quark polarization vector) in more detail. Then, we shall study the Lorentz violation effect on the azimuthal contribution of decay rate. We will show that the LV effect leads to a non-zero contribution for the azimuthal correlation at lowest-order of perturbation. This deviation from the SM results could be considered as a suitable situation to search for the Lorentz symmetry violation and then the new physics. Using the analytical results, we will also determine upper limits for some LV coefficients which are in good consistency with the ones reported by the CERN-CMS collaboration. We will also show that the LV effect leads to another azimuthal correlation contribution, which is absent at all perturbation orders in the SM.
Keywords
Main Subjects
- D P Roy, Pramana 54 (2000) 3.
- R Rosenfeld and J L Rosner, Lett. B 516 (2001) 408.
- K D Lane, hep-ph/9401324[hep-ph]
- H Georgi, Rev. Lett.98 (2007) 221601.
- M R Douglas and N Nekrasov, Mod. Phys. 73 (2001) 977.
- Z Rezaei and R Salehi, Annals Phys. 406 (2019) 71.
- A Rafiei, Z Rezaei and A Mirjalili, Phys. J. C 82, 1 (2022) 62.
- Z Rezaei and S P Mehdiabadi, Phys. G 46, 10 (2019) 105003.
- Z Rezaei and T Alizadeh, J. Phys. Res. 19, 2 (2019) 455.
- D Colladay and V A Kostelecky, Rev. D 55 (1997) 6760.
- D Colladay and V A Kostelecky, Rev. D 58 (1998) 116002.
- V Ekraminasab and S Mohammad Moosavi Nejad, Phys. J. C 84, 4 (2024) 430.
- M Haghighat, I Motie and Z Rezaei, Int. J. Mod. Phys. A 28, 24 (2013) 1350115.
- B Charneski, et al., Rev. D 86 (2012) 045003.
- H Belich, et al., Rev. D 74 (2006) 065009.
- V A Kostelecky and C D Lane, Rev. D 60 (1999) 116010.
- R Bluhm, V A Kostelecky and C D Lane, Rev. Lett. 84 (2000) 1098.
- R Bluhm, V A Kostelecky and N Russell, Rev. Lett. 82 (1999) 2254.
- Cabibbo, Rev. Lett. 10 (1963) 531.
- M Kobayashi and T Maskawa, Theor. Phys. 49 (1973) 652.
- A M Sirunyan,et al., Lett. B 772 (2017) 752.
- S Groote, et al., Rev. D 83 (2011) 054018.
- T Ebrahimi, S Mohammad Moosavi Nejad, Z Rezaei, Phys. J. C 85, 3 (2025) 309.
- J G Korner and D Pirjol, Rev. D 60 (1999) 014021.
- S Mohammad Moosavi Nejad, S Abbaspour, and R Farashahian, Rev. D 99, 9 (2019) 095012.
26. H H Patel, Comput. Phys Commun. 218 (2017) 66.
- A Czarnecki and M Jezabek, Phys. B 427 (1994) 3.
- S Mohammad Moosavi Nejad and M Balali, Phys. J. C 76, 3 (2016) 173.
- S Mohammad Moosavi Nejad and M Balali, Rev. D 90, 11(2014) 114017; Phys. Rev. D 93, 11 (2016) 119904 (erratum)
- R L Workman, et al,. Theor. Exp. Phys.2022 (2022) 083C01.
- D Colladay and V A Kostelecky, Lett. B 511 (2001) 209.
- A Hayrapetyan, et al,. Lett. B 857(2024) 138979.
- V M Abazov, et al,. Rev. Lett.108(2012) 261603.
- B Altschul, Rev. D 102, 7 (2020) 075010.
- E Lunghi andN Sherrill, Rev. D 98, 11 (2018) 115018.
- V Alan Kostelecký, E Lunghi, and A R Vieira, Lett. B 769 (2017) 272.
- S Mohammad Moosavi Nejad, Phys. B 905(2016) 217.
- S Mohammad Moosavi Nejad and Delpasand, Eur. Phys. J. A 53, 9 (2017)174.
- M Salajegheh, S Mohammad Moosavi Nejad, and M Delpasand, Rev. D 100, 11 (2019), 114031.