Document Type : Original Article
Author
Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
Abstract
This article investigates the formation of Photonic Nanojets (PNJs) produced by ring-shaped structures with a Fresnel-like geometric distribution using the Reduced Discrete Dipole Approximation (RDDA) method. Three structures with geometric distributions of regular rings, rings aligned with Fresnel zones, and bifocal Fresnel zones have been studied. The formation and optimization of dual PNJs (two simultaneous photonic nanojets) along the propagation axis have been found by dividing the Fresnel zones into two regions, as well as by adjusting the average focal length favg and the disk radius R, which leads to a change in the number of primary Fresnel zones in each divided region. The Best decoupled and confined dual PNJs from the proposed structures have been identified for several optimized states.
Keywords
Main Subjects
- Z Chen, A. Taflove, and V. Backman, Express 12 (2004) 1214.
- X Li, Z Chen, A Taflove, et al., Express 13 (2005) 526.
- I Mahariq and H Kurt, Opt. Soc. Am. B 32 (2015) 1022.
- A Mandal and V Dantham, AIP Conf. Proc. 2220 (2020) 020162.
- A Mandal and V R. Dantham, J. Quant. Spectrosc. Radiat. Transfer 257 (2020) 107350.
- A Mandal and V R. Dantham, Opt. Soc. Am. B 37 (2020) 977.
- Y -X. Ren, X Zeng, L -M Zhou, et al., ACS Photonics 7 (2020) 1483.
- W Wu, A. Katsnelson, O G. Memis, et al., Nanotechnology 18 (2007) 485302.
- E Mcleod and C B Arnold, Nanotechnol. 3 (2008) 413.
- J Kim, K Cho, I Kim, et al., Phys Express 5 (2012) 025201.
- L A Krivitsky, J J Wang, Z Wang, et al., Rep. 3 (2013) 3501.
- H Yang, R Trouillon, G Huszka, et al., Nano Lett. 16 (2016) 4862.
- C Kuang, Y Liu, X Hao, et al., Commun. 285 (2012) 402.
- A Heifetz, S -C Kong, A. V. Sahakian, et al., Comput. Theor. Nanosci. 6 (2009) 1979.
- S Lee, L Li, and Z. Wang, Opt. 16 (2013) 015704.
- J Zhu and L L Goddard, Nanoscale Adv. 1 (2019) 4615.
- I V Minin, C Y Liu, Y E Geints, et al., Photonics 7 (2020) 41.
- S C Kong, A Taflove, and V Backman, Express 17 (2009) 3722.
- Y Shen, L V Wang, and J T Shen, Lett. 39 (2014) 4120.
- P Kushwaha, H Patel, M Swami, et al., SPIE 9654 (2015) 96541H.
- C Y Liu, Physica E 64 (2014) 23.
- C Y Liu and F -C. Lin, Commun. 380 (2016) 287.
- H Patel, P Kushwaha, and M. Swami, Commun. 415 (2018) 140.
- T Wang, C Kuang, X. Hao, et al., Opt. 13 (2011) 035702.
- Y Ben-Aryeh, Phys. B 91 (2008) 157.
- W J Wiscombe, Opt. 19 (1980) 1505.
- V Cachorro and L Salcedo, Electromagn.Waves Appl. 5 (1991) 913.
- A Itagi and W Challener, Opt. Soc. Am. A 22 (2005) 2847.
- J J Wang, D McCloskey, and J. F. Donegan, SPIE 8321 (2011) 1031.
- A Darafsheh and D Bollinger, Commun. 402 (2017) 270.
- T Jalali and D Erni, Mod. Opt. 61 (2014) 1069.
- T Jalali, Indian J. Phys. 89 (2015) 729.
- B T Draine and P. J. Flatau, Opt. Soc. Am. A 11 (1994)1491.
- Y E Geints, A. Zemlyanov, and E. Panina, Oceanic Opt. 28 (2015) 436.
- M R Ataii and J M Amjad, Opt. 63 (2024) 632543.
- J R Reitz, “Foundations of Electromagnetic Theory”, Addison-Wesley, USA, (1979).
- B D Guenther, “Modern Optics”, Oxford University Press, Oxford, United Kingdom, (2015).