Document Type : Original Article

Authors

1 Physics Laboratory of Thin Layers and Applications, University of Biskra, BP 145 RP, Biskra 07000, Algeria

2 Laboratory of Metallic and Semi-Conducting Materials, University of Biskra, B.P. 145, 07000 Biskra, Algeria

Abstract

In this study, we synthesized undoped and doped cobalt oxide (Co3O4) thin films at a concentration of 0.2 M, incorporating varying copper doping levels of 2, 4, 6, 8, and 10 wt. % through spray pyrolysis technique (SPT). The present investigation aims to enhance the characteristics of the films, including the crystalline size, band gap energy, and electrical conductivity. X-ray diffraction patterns (XRD) were used to determine the size of the crystalline structures. The findings indicate that incorporating Cu leads to an increase in the crystallite size. The crystal size (D) increased to 40.94 nm after doping with 10 wt.% Cu. Energy-dispersive X-ray (EDX) mapping analysis validated the presence of copper within the Co3O4 thin films. We identified two distinct band gaps from the absorption coefficient measurements: E1 and E2. The band gap energy values ranged from 1.441 to 1.388 eV and from 2.061 to 2.012 eV, depending on the Cu doping concentration. The electrical properties demonstrated a reduction in the Rsheet resistance and an enhancement in the electrical conductivity as the concentration of Cu increased.

Keywords

Main Subjects

  1. E C Okpara, O C Olatunde, O B Wojuola, and D C Onwudiwe, Adv. 11 (2023) 100341.
  2. I Concina and A Vomiero, Small 11 (2015) 1744.
  3. X Yu, T J Marks, and A Facchetti, Mater. Chem. C 15 (2016) 383.
  4. R Marnadu, M Shakir, J Hakami, I M Ashraf, P Baskaran, D Sivaganesh, K V Chandekar, W K Kim, S Gedi, Interfaces 34, 102366 (2022).
  5. J W Kim, S J Lee, P Biswas, T I Lee, and J M Myoung, Surf. Sci. 406 (2017) 192.
  6. Y Zhang, J Ge, B Mahmoudi, S Förster, F Syrowatka, A W Maijenburg, and R Scheer, ACS Appl. Energy Mater. 3 (2020) 3755.
  7. L Qiao, H Y Xiao, H M Meyer, J N Sun, C M Rouleau, A A Puretzky, D B Geohegan, I N Ivanov, M Yoon, W J Weber, and M D Biegalski, Mater. Chem. C 1 (2013) 4628.
  8. K J Kim and Y R Park, Solid State Commun. 127 (2003) 25.
  9. D Barreca, C Massignan, S Daolio, M Fabrizio, C Piccirillo, L Armelao, and E Tondello, Mater. 13 (2001) 588.
  10. C L Liao, Y H Lee, S T Chang, and K Z Fung, Power Sources 158 (2006) 1379.
  11. M B Muradov, S J Mammadyarova, G M Eyvazova, O O Balayeva, I Hasanova, G Aliyeva, S Z Melikova, and M Abdullayev, Mater. 142 (2023) 114001.
  12. Q Cheng, R Zhu, J Zhengzhou, Y Zhang, B Yang, and W Zhang, Alloys Compd. (2024).
  13. L Abdelhak, B Amar, B Bedhiaf, D Cherifa, and B Hadj, High Temp. Mater. Process. 38 (2019) 237.
  14. P Wei, J Liang, Q Liu, L Xie, X Tong, Y Ren, T Li, Y Luo, N Li, B Tang, A M Asiri, M S Hamdy, Q Kong, Z Wang, and X Sun, Colloid Interface Sci. 615 (2022) 636.
  15. A V Koroleva, A S Ilin, V M Smirnova, N Martyshov, V B Platonov, M N Rumyantseva, A P Forsh, P K Kashkarov, and K Kashkarov, ChemistrySelect (2023).
  16. G A Babu, G Ravi, T Mahalingam, M Navaneethan, M Arivanandhan, and Y Hayakawa, Phys. Chem. C 118 (2014).
  17. C Schuschke, L Fusek, V Uvarov, M Vorokhta, B Šmíd, V Johánek, Y Lykhach, J Libuda, J Mysliveček, and O Brummel, Catal. React. Interfaces (2021).
  18. Z Wang, H Liu, R Ge, R Xiang, J Ren, D Yang, L Zhang, and X Sun, ACS Catal. 8, Issue 3 (2018).
  19. J X Flores-Lasluisa, J Quílez-Bermejo, A C Ramírez-Pérez, F Huerta, D Cazorla-Amorós, and E Morallón, Materials 12 (2019) 1302.
  20. M Zahan and J Podder, Biointerface Res. Appl. Chem. 12 (2022) 6321.
  21. R Venkatesha, C Ravi Dhasa, R Sivakumar, T Dhandayuthapani, B Subramanian, C Sanjeeviraja, and A M Ezhil Raje, Solid State Ionics 334 (2019) 5.
  22. Z Bencharef, A Chalaa, R Messemeche, and Y Benkhetta, Main Group Chem. 21 (2022) 329.
  23. J H Richter, Digital Comprehensive Summaries of Uppsala Faculty of Science and Technology 228 (1969).
  24. A Abdelkrim, S Rahmane, O Abdelouahab, A Hafida, and N Kabila, Phys. B (2016).
  25. C Dalache, H Benhebal, B Benrabah, A Ammari, A Kharroubi, and A Lakhal, Rev. Lett. 26 (2019) 1.
  26. M Shkir, Alloys Compd. 967 (2023) 171637.
  27. I B Kherkhachi, A Attaf, H Saidi, A Bouhdjar, H Bendjdidi, Y Benkhetta, R Azizi, and M S Aida, Optik 127 (2016) 2266.
  28. A Derbali, H Saidi, A Attaf, H Benamra, A Bouhdjer, N Attaf, H Ezzaouia, L Derbali, and M S Aida, Semicond. 39 (2018) 093001.
  29. R D Prabu, S Valanarasu, V Ganesh, M Shkir, S AlFaify, and A Kathalingam, Interface Anal. 50 (2018) 346.
  30. R C Ambare, S R Bharadwaj, and B J Lokhande, Appl. Phys. 14 (2014) 1582.
  31. A Lakehal, B Benrabah, A Bouaza, C Dalache, and B Hadj, J. Phys. (2018).
  32. V V Petrov, V V Sysoev, I O Ignatieva, I A Gulyaeva, M G Volkova, A P Ivanishcheva, S A Khubezhov, Y N Varzarev, and E M Bayan, Sensors 23 (2023) 5617.
  33. M Manickam, V Ponnuswamy, C Sankar, R Suresh, R Mariappan, A Chandra, and J Chandrasekaran, Mater. Sci. Mater. Electron. 28 (2017) 18951.
  34. M Zahan and J Podder, Biointerface Res. Appl. Chem. 12 (2022) 6321
  35. I Azhar, H Sahar, and I Maki, Int. Conf. TMREES17, Beirut, Lebanon (2017).

ارتقاء امنیت وب با وف بومی