Document Type : Original Article

Authors

1 Mustansiriyah University, College of Science, Department of Physics, Baghdad, Iraq

2 دانشگاه مستنصریه، دانشکده علوم، گروه فیزیک، بغداد، عراق

Abstract

This work investigates the properties of the Lateral Distribution Function (LDF) of gamma-ray-induced Extensive Air Showers (EAS) across a large energy range from (1015 to 1020) eV, which includes the knee and ankle energy regions.  The AIRES (AIR-shower Extended Simulations) system was used in simulations to generate secondary gamma rays, with primary protons serving as initiating particles. Hadronic interaction models, particularly QGSJET-04-II and EPOS-LHC, were used to explore the impact of alternative physical assumptions on shower development.  The lateral distribution of secondary gamma rays was studied systematically at various primary energy and zenith angles. The findings show that the LDF is clearly dependent on primary energy, with considerable differences between the knee and ankle regions. Furthermore, zenith angles have a major influence on the lateral dispersion of gamma rays, emphasizing differences in particle interactions and shower dynamics. The sigmoidal function was used to set the lateral distribution coefficient curves of EAS, generating new coefficients as a function of primary energy.  These findings provide vital insights into the behavior and detection of gamma-ray-induced EAS, increasing our knowledge of high-energy astrophysics and cosmic-ray studies.

Keywords

Main Subjects

  1. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. 798 (2015)
  2. I F Hussein and A A Al-Rubaiee, Malaysian J. Sci. 33 (2022) 74.
  3. P Sommers, C R Physique 5 (2004) 463.
  4. A. N. Cillisa and S. J. Sciuttob, Phys. Rev. 64 (2001) 013010.
  5. I F Hussein, A A Al-Rubaiee, et al., Nucl. Phys. 33 (2024).
  6. A M Hillas, Acta Phys. Acad. Sci. Hung. 29(Suppl. 3), (1970) 360.
  7. A Obermeier, Forschungszentrum Karlsruhe GmbH, FZKA 7284 (2007).
  8. G V Kulikov and G B Khristiansen, Semantic Scholar (1963).
  9. J H Buckley, C W Akerlof, et al., Astron. Astrophys. 329 (1998) 639.
  10. B Bartoli, P Bernardini, et al., Phys. Rev. D 91 (2015) 112017.
  11. Z You, S Zhang, et al. (LHAASO), Proc. 38th Int. Cosmic Ray Conf. (ICRC2023).
  12. F Varsi, S Ahmad, et al. (GRAPES-3), Proc. XXIV DAE-BRNS High Energy Phys. Symp., 277 (2022) 649.
  13. V V Prosin, S F Berezhnev, et al., Nucl. Instrum. Methods Phys. Res. A 756 (2014) 94.
  14. K F Fadhel, A A Al-Rubaiee, et al., J. Phys. 2386 (2021).

15 Li Xinlong, Tianlu Chen, CC BY 4.0 License (2023).

  1. A Geraniosi, E Fokitis, et al., Proc. 30th Int. Cosmic Ray Conf. (2008).
  2. A A Al-Rubaiee, U Hashim, et al., Serb. Astron. J. 190 (2015) 79.
  3. A A Al-Rubaiee, Astrophys. Astron. 35 (2014) 631.
  4. R I Raikin, A A Lagutin, et al., Proc. Int. Cosmic Ray Conf. (ICRC 2001)
  5. K Greisen, Ann. Rev. Nucl. Sci. 10 (1960) 63.
  6. B K Lubsandorzhiev, Nucl. Instrum. Methods Phys. Res. A 595 (2008) 73.
  7. A A Al-Rubaiee, O A Gress, et al., Russ. Phys. J. 48 (2005) 1004.
  8. B A Chartres, H Messel, Phys. Rev. 104 (1956) 517.
  9. T Stanev, High Energy Cosmic Rays, Springer, Heidelberg.462 (2010).
  10. I F Hussein, A A Al-Rubaiee, AIP Conf. Proc. 2591 (2023) 030072.
  11. A V Glushkov, A Saburov, Phys. Atom. Nucl. 82 (2019) 663.
  12. I F Hussein, A A. Al-Rubaiee, Al-Mustansiriyah J. Sci. 33 (2022).
  13. J Matthews, Astropart. Phys. 22 (2005) 387.
  14. T K Gaisser, R Engle, et al., Cosmic Rays and Particles Physics (2nd ed.), Cambridge University Press (2016) 444
  15. S Hayakawa, Cosmic Ray Physics: Nuclear and Astrophysical Aspects, Vol. 22, Interscience Monographs (1969).
  16. D Heck, J Knapp, et al., CORSIKA: A Monte Carlo code to simulate extensive air showers .FZKA Report 6019 (1998).
  17. G Atreidis, EPJ Web Conf. 137 (2017) 13001.
  18. S J Sciutto, AIRES: User's Guide and Reference Manual, Technical Report (2019).

ارتقاء امنیت وب با وف بومی