Document Type : Original Article

Authors

1 Department of Physics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

2 Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran

Abstract

This paper investigates the effect of temperature anisotropy on the reactivity and ignition of P-¹¹B degenerate fuel pellet in the Magneto-Inertial Fusion (MIF) process. Energy balance equations are solved to analyze the impact of temperature anisotropy and degeneracy parameter variations on ignition dynamics. The results demonstrate that increasing the degeneracy parameter amplifies fusion power while reducing bremsstrahlung power. Temperature anisotropy below unity (β < 1) enhances system stability, creating favorable conditions for ignition and achieving higher energy gain. During the pre-pulse phase, the system achieves its highest energy gain, and as time progresses, the gain gradually decreases. An increase in temperature anisotropy leads to the maximum energy gain occurring at a later time. The findings contribute to addressing the challenges associated with P-11B fusion and improving the prospects of achieving efficient fusion reactions in magneto-inertial fusion.

Keywords

Main Subjects

  1. G A Wurden, S C Hsu, T P Intrator, T C Grabowski, J H Degnan, M Domonkos, P J Turchi, E.M Campbell, D B Sinars, M C Herrmann, and R Betti, Journal of Fusion Energy 35 (2016) 69.
  2. D H Barnak, J R Davies, R Betti, M.J Bonino, E M Campbell, V Y Glebov, D R Harding, J P Knauer, S P Regan, A B Sefkow, and A J Harvey-Thompson, Physics of Plasmas 24 (2017) 056310-1.
  3. S C Hsu and J L Samuel, Journal of Fusion Energy 38 (2019) 182.
  4. S A Slutz, and R A Vesey, Physical review letters 108 (2012) 025003.
  5. M Kouhi, M Ghoranneviss, B Malekynia, H Hora, G H Miley, A H Sari, N Azizi, and S S Razavipour, Laser and Particle Beams 29 (2011) 125.
  6. E J Kolmes, M.E Mlodik and N J Fisch, Physics of Plasmas 28 (2021) 052107.
  7. S Amininasab, R Sadighi‐Bonabi, and F.Khodadadi Azadboni, Contributions to Plasma Physics 59 (2019) e201800111.
  8. T Pahuja, A Kumar, H Sagar, R Gupta, and J Sharma, AIP Advances 14 (2024) 025136.
  9. J D Cockroft and E.T.S Walton, Proc. Roy. Soc. London A 137 (1932) 229.
  10. N Azizi, H Hora, G H Miley, B Malekynia, M Ghoranneviss, and X He, Laser and Particle Beams 27 (2009) 201.
  11. J H Nuckolls, “Laser-induced implosion and thermonuclear burn. In Laser Interaction and Related Plasma Pheonomena” (H Schwarz and H Hora, Eds.) (New York: Plenum Press,1974).
  12. T Weaver, G Zimmerman, and LWood, “Exotic CTR fuels: Non-thermal effects and laser fusion applications” (Report UCRL-74938. Livermore, CA: Lawrence Livermore Laboratory,1973).
  13. H Hora and G H Miley, International Conference on Nuclear Engineering 49347 (2010) 611-620.
  14. S Son, and N J Fisch, Physics Letters A 329 (2004) 76.
  15. S Eliezer, and J M Martinez-Val, Laser and Particle Beams 16 (1998) 581.
  16. W McKenzie, D Batani, T A Mehlhorn, D Margarone, F Belloni, E M Campbell, S Woodruff, J Kirchhoff, A Paterson, S Pikuz, and H Hora, Journal of Fusion Energy 42 (2023) 17.
  17. F A Geserand M Valente, Radiat. Phys. Chem. 167 (2020) 108224.
  18. P T León, S Eliezer, M Piera, and J M Martínez-Val, In Current Trends in International Fusion Research: Proceedings of the Fifth Symposium NRC Research Press, (2008) 323.
  19. W M Nevins and R Swain, Nucl. Fusion 40 (2000) 865.
  20. D Margarone, J Bonvalet, L Giuffrida, A Morace, V Kantarelou, M Tosca, D Raffestin, P Nicolai, A Picciotto, Y Abe, et al.  Appl. Scie. 12 (2022) 1444.
  21. S Stave, M W Ahmed, R H France III, S S Henshaw, B Müller, B A Perdue, R M Prior, M C Spraker, and H R Weller, Phys. Lett. B 696 (2011) 26.
  22. M Sikora, and H Weller, J. Fusion Energy 35 (2016) 538.
  23. R M Magee, K Ogawa, T Tajima, I Allfrey, H Gota, P McCarroll, S Ohdachi, M Isobe, S Kamio, V Klumper, and H Nuga, Nature communications 14 (2023)
  24. F Khodadadi Azadboni, A Khademloo, and M Mahdavi, Iranian Journal of Physics Research 24 (2024) 99.
  25. M Mahdavi and A Gholami, Indian Journal of Physics 96 (2022) 869.
  26. F Khodadadi Azadboni, A Khademloo, and M Mahdavi, Iranian Journal of Physics Research 23 (2023) 147.
  27. M Mahdavi, M Bakhtiyari, and A Najafi, Indian Journal of Physics 97 (2023) 1277.
  28. S Atzeni, and J Meyer-ter-Vehn, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter, Oxford University Press (2004).
  29. S Pfalzner, An Introduction to Inertial Confinement Fusion (CRC Press, 2006), Chap. 3.
  30. S A Slutz et al., Phys. Plasmas 17 (2010) 056303.
  31. S P Gary, Theory of space plasma microinstabilities (No. 7). Cambridge university press (1993).
  32. S Eliezer, Z Henis, N Nissim, S V Pinhasi, and J M M Val, Laser and Particle Beams 33 (2015) 577.
  33. M Mahdavi, A Gholami, and O N Ghodsi. Chinese Journal of Physics 68 (2020) 596.
  34. MS Chu, Phys. Fluids 15 (1972) 413.
  35. M Mahdavi, and A Gholami, Fusion Engineering and Design 142 (2019) 33.
  36. W M Stacey, Fusion Plasma Physics, 2nd Edition, Wiley-VCH (2012).

ارتقاء امنیت وب با وف بومی