Internal polarizations field which take place in quantum structures of group-III nitrides have an important consequence on their optical properties. Optical properties of wurtzite AlGaN/GaN quantum well (QW) structures grown by MBE and MOCVD on c-plane sapphire substrates have been investigated by means of photoluminescence (PL) and time resolved photoluminescence (TRPL) at low-temperature. PL spectra exhibit a blue-shifted emission of AlGaN/GaN quantum well (QW) nanostructures by decreasing the barrier width contrary to the arsenide system. The trend of the barrier-width dependence of the internal polarization field is reproduced by using simple electrostatic arguments. In addition the effect of well width variation on the optical transition and decay time of GaN MQWs have been investigated and it has been shown that the screening of the piezoelectric field and the electron-hole separation are strongly dependent on the well thickness and have a profound effect on the optical properties of the GaN/AlGaN MQWs.


ارتقاء امنیت وب با وف ایرانی