Abstract
Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research instiutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length scales. One important area of research in nano-science and nano-technology is carbon-based physics in the form of fullerene physics. The C60 molecule, and other cage-like fullerenes, together with carbon nanotubes provide objects that can be combined to generate three-dimensional functional structures for use in the anticipated nano-technology of future. The unique properties of C60 can also be exploited in designing nano-phase thin films with applications in nanoscopic device technology and processes such as nano-lithography. This requires a deep understanding of the highly complex process of adsorption of this molecule on a variety of substrates. We review the field of nano-scale nucleation and growth of C60 molecules on some of the technologically important substrates. In addition to experimental results, the results of a set of highly accurate computational simulations are also reported.
Keywords