Authors

Abstract

  It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph) interactions as the pairing mechanism (ARPES), and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy). In this paper, we introduce the Holstein-Kondo lattice model (H-KLM) which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT) to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .

Keywords

ارتقاء امنیت وب با وف ایرانی