Document Type : Original Article

Authors

Department of Physics, Shiraz University of Technology, Shiraz, Iran

Abstract

In this study, we investigate the trajectory of magnetic nanoparticle flowing through a microvessel in the presence of cylindrical magnet. By using the equation of motion of particle in the presence of magnetic and fluidic forces, the motion trajectory of magnetic particle in the microvessel is calculated. Our numerical results show that the probability of trapping magnetic particles in the straight microvessel is a function of the intensity of the magnetic field, particle radius, particle magnetization, and diameter of vessel. In this study, we investigate the effect of particle radius, magnet magnetization, particle saturation magnetization and vessel radius on the trajectory of magnetic nanoparticle flowing through the straight vessel. The results show that with increasing particle radius, magnet magnetization, particle saturation magnetization and also with decreasing vessel radius, the probability of trapping a floating particle in the channel increases

Keywords

  1.  
    1. ‎ S E Ong, S Zhang, H Du, and Y Fu, Biosci. 13, 7 (2008) 2757.
    2. L Y Yeo, H C Chang, P P Chan and J R Friend, Small 7, 1(2011)12.
    3. G M Whitesides, Nature 442 7101 (2006) 368.
    4. E Kadivar and A Alizadeh, Phys. J. E 40, 3 (2017) 31.
    5. M Hashimoto, P Garstecki, H A Stone, and G M Whitesides, Soft Matter 4 (2008) 1403.
    6. E Kadivar, EPL (Europhysics Letters) 106, 2 (2014) 24003.
    7. A Khan, X D, Niu, Y Li, M F Wen, D C Li, and H Yamaguchi, J. Numer. Methods Fluids, 92, 11 (2020) 1584.
    8. R S Molday, S P S Yen, and A Rembaum, Nature 268, 5619 (1977) 437
    9. A Thiel, A Scheffold, and A Radbruch, Immunotechnology 4 2 (1998) 89.
    10. N Pamme, Lab on a Chip 6, 1 (2006) 24.
    11. E P Furlani and K C Ng, Rev. E. 73, 6 (2006) 061919.
    12. J Kim, M Massoudi, J F Antaki, and A Gandini, Applied Mathematics and Computation 218, 12 (2012) 6841.
    13. B D Plouffe, S K Murthy, and L H Lewis, Prog. Phys. 78, 1 (2014) 016601.
    14. R Zhou, Q Yang, F Bai, J A Werner, H Shi, Y Ma, and C Wang, Nanofluidics 20, 7 (2016) 110.
    15. V F Cardoso, D Miranda, G Botelho, G Minas, and S Lanceros-Méndez, Actuators B Chem. 255, (2018) 2384.
    16. H Cho, J Kim, H Song, K Y Sohn, M Jeon, and K H Han, Analyst 143, 13 (2018) 2936.
    17. E P Furlani, Y Sahoo, K C Ng, J C Wortman, and T E Monk, Microdevices 9, 4 (2007) 451.
    18. B N Zhao, Journal of Electromagnetic Analysis and Applications 11, 02 (2019) 17.
    19. Y Zhu, B Zhang, J Gu, and S Li, Magn. Magn. Mater. 501 (2020) 166485.
    20. J Gómez-Pastora, I H Karampelas, E Bringas, E P Furlani, and I Ortiz, Rep. 9, 1 (2019) 1.
    21. Z Wang, C Liu, W Wei, International Journal of Applied Electromagnetics and Mechanics 60, 2 (2019)
    22. R Gerber, M Takayasu, and F J Friedlaender. IEEE Transactions on Magnetics 19 5 (1983) 2115.
    23. T H Boyer, J. Phys. 56 (1988) 688.
    24. T P Jones, “Electromechanic of particles”, Cambridge University Press, Cambridge, UK, (1985).
    25. G K Batchelor, “An Introduction in Fluid Dynamics”, Cambridge University Press, Cambridge, UK (1970).
    26. A R Pries, T W Secomb, and P Gaehtgens, Res. 32 (1996) 654.
    27. R F Haynes, J. Physiol. 198 (1960) 1193.
    28. A R Pries, T W Secomb, and P. Gaehtgens. Cardiovascular research 32,4 (1996) 654.
    29. R Chebbi, Journal Biol. Phys. 41 (2015) 313.