Document Type : Original Article

Author

Department of Physics, Damghan University, Damghan, Iran

Abstract

In this paper we will consider cosmological implications of the Rastall theory with a non-minimal coupling with baryonic matter fields. In Rastall theory, the matter energy-momentum tensor is not conserved and the non-conservation is related to the curvature. We will generalize this relation to become dependent on both curvature and matter fields. Cosmology of the model shows more matter abundance compared to the  model. We will show that the dynamical system of the model is the same as with an additional degree of freedom.

Keywords

  1. S Perlmutter et al., J. 517 (1999) 565; A G Riess et al., Astron. J. 116 (1998) 1009; J L Tonry et al., Astrophys. J. 594 (2003) 1; A G Riess et al., Astrophys. J. 607 (2004) 665; D N Spergel et al., Astrophys. J. Suppl. 148 (2003) 175; M Tegmark et al., Phys. Rev. D 69 (2004) 103501; D J Eisenstein et al., Astrophys. J. 633 (2005) 560.
  2. S Weinberg, Mod. Phys. 61 (1989) 1; A Padilla, arXiv:1502.05296 [hep-th]; L Lombriser, Phys. Lett. B 797 (2019) 134804; Di Valentino, O Mena, S Pan, L Visinelli, W Yang, A Melchiorri, D F Mota, A G Riess, J Silk, arXiv:2103.01183 [astro-ph.CO]; G Efstathiou, arXiv:2007.10716 [astro-ph.CO]; E Martsell, S Dhawan, JCAP 09 (2018) 025; M Douspis, L Salvati, N Aghanim, arXiv:1901.05289 [astro-ph.CO].
  3. J P Ostriker and Paul J Steinhardt. arXiv:astro-ph/9505066.
  4. I Quiros, J. Mod. Phys. D 28 (2019) 1930012; T Kobayashi, Rept. Prog. Phys. 82 (2019) 086901; C Deffayet, D A Steer, Class. Quantum Grav. 30 (2013) 214006.
  5. R Kimura, A Naruko, D Yoshida, JCAP 01 (2017) 002; L Heisenberg, JCAP 05 (2014) 015; L Heisenberg, R Kase, S Tsujikawa, Lett. B 760 (2016) 617; Z Haghani, T Harko, H R Sepangi, S. Shahidi, Eur. Phys. J. C 77 (2017) 137; S Shahidi, EPJC 79 (2019) 448; S Shahidi, Phys. Rev. D 98 (2018) 084004; A Amado, Z Haghani, A Mohammadi, S Shahidi, Phys. Lett. B 772 (2017) 141; F Charmchi, Z Haghani, S Shahidi, L Shahkarami, Phys. Rev. D 93 (2016) 124044.
  6. C de Rham, Living Rev. Relativity 17 (2014), 7; K Hinterbichler, Mod. Phys. 84 (2012) 671.
  7. Z Haghani, N Khosravi, S Shahidi, Quant Grav. 32 (2015) 215016; J Attard, J François, and S Lazzarini, Phys. Rev. D 93 (2016) 085032; Z Haghani, T Harko, H R Sepangi, S Shahidi, JCAP 10 (2012) 061; Z Haghani, T Harko, H R Sepangi, S Shahidi, Phys. Rev. D 88 (2013) 044024; Y Xu, G Li, T Harko, S Liang, EPJC 79 (2019) 708; Y Xu, T Harko, S Shahidi, S Liang, EPJC 80 (2020)449; J Yang, S Shahidi, T Harko, S Liang, EPJC 81 (2021) 111.
  8. T Harko, F S.N. Lobo, S Nojiri and S D Odintsov, Rev. D 84 (2011) 024020; T Harko and F S N Lobo, Eur. Phys. J. C 70 (2010) 373; I Ayuso, J Beltran Jimenez and A de la Cruz Dombriz, Phys. Rev. D 91 (2015) 104003; S D Odintsov and D Saez-Gomez, Phys. Lett. B 725 (2013) 437; N Katirci and M Kavuk, Eur. Phys. J. Plus 129 (2014) 163; O Bertolami, C G Boehmer, T Harko, F S N Lobo, Phys. Rev. D 75 (2007) 104016; Z Haghani, T Harko, and f S N Lobo, H R Sepangi, and S Shahidi, Phys. Rev. D 88 (2013) 044023.
  9. M Roshan and f Shojai, Rev. D 94 (2016) 044002; J D Barrow and C Board, Phys. Rev. D 96 (2017) 123517; O Akarsu, N Katirci and S Kumar, Phys. Rev. D 97 (2018) 024011.
  10. Z Haghani and S Shahidi, PDU (2020) 100683; Z Haghani, and S Shahidi, EPJ Plus 135 (2020) 509.
  11. P Rastall, Rev. D 6 (1972) 3357.
  12. R A Bertlemann, “Anomalies in quantum field theory”, Oxford university press, Oxford (1996).
  13. J C FabrisO F Piattella, and D C Rodrigues, AIP Conf. Proc1647 (2015) 50.
  14. O Bertolami and L Guisado, Rev. D 67 (2003) 025001; O Bertolami, Mod. Phys. Lett. A 29 (2005) 123525.
  15. O Bertolami, F Gil Pedro and M Le Delliou, Lett. B 654 (2007) 165.
  16. Y Heydarzade and F Darabi, Lett. B 771 (2017) 365, arXiv:1702.07766; J P Morais Graca and I P Lobo, Eur. Phys. J. C 78 (2018) 101, arXiv:1711.08714; R. Kumar and S. G. Ghosh, Eur. Phys. J. C 78, 750 (2018), arXiv:1711.08256; M.-S. Ma and R Zhao, Eur. Phys. J. C 77 (2017) 629, arXiv:1706.08054; A. M. Oliveira, H. E. S. Velten, J C Fabris, and L Casarini, Phys. Rev. D 92 (2015) 044020, arXiv:1506.00567; F Darabi, H Moradpour, I. Licata, Y. Heydarzade, and C Corda, Eur. Phys. J. C 78 (2018) 25, arXiv:1712.09307; T R P Caramê et al., Eur. Phys. J. C 74 (2014) 3145, arXiv:1409.2322.
  17. O Akarsu, N Katirci, S Kumar, R C Nunes, B Ozturk, and S Sharma, Phys. J. C 80 (2020) 1050.
  18. C E M BatistaJ C FabrisO F PiattellaA M Velasquez-Toribio, Phys. J. C 73 (2013) 2425.
  19. M Capone , V F Cardone, and M L Ruggiero, Phys.: Conf. Ser. 222 (2010) 012012.
  20. R V dos Santos, and J A C Nogales, arXiv:1701.08203 [gr-qc]; H Shabani, and A H Ziaie, Let. 129 (2020) 20004; J C Fabris, O F Piattella, and D C Rodrigues, D C Rodrigues, E C O Santos, arXiv:2011.10503 [gr-qc]; K A Bronnikov, J C Fabris, O F Piattella, D C Rodrigues, E C Santos, Eur. Phys. J. C 77 (2017) 409.
  21. M Visser, Let. B 782 (2018) 83.
  22. F Darabi, H Moradpour, I Licata, Y Heydarzade, C Corda, EPJC 78 (2018) 25.
  23. J Khoury and A Weltman, Rev. D 69 (2004) 044026.
  24. H Boumaza and K Nouicer, Rev. D 100 (2019) 124047.