Document Type : Original Article

Authors

Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran

Abstract

We study a model for production of stable micro black holes based on investigation of the thermodynamics of micro black holes and the LHC test. That showed how this production can be obtained by a thermodynamic process of stability. The general second law of black hole thermodynamics plays an important role here and, through Hawking radiation and fusion reactions entropy formulas a valid total entropic is obtained. Therefore, we reach an energy of stability by quantum perturbation expansion over this total entropic formula that is illustrated in detail in this paper. Based on this study, the producing of stable particles (in terms of our investigation, micro-black holes) at the LHC might yielded an interesting result that it is worth a try, which could have different results.

Keywords

Main Subjects

  1. A J Baltz, et al., Phys. Rep. 458 (2008) 171.

    1. G T Hooft, Nucl. Phys. B 35 (1971) 167.
    2. G T Hooft and M J G Veltman, Nucl. Phys. B 44 (1972) 189.
    3. J L Feng and A D Shapere, Phys. Rev. Lett. 88 (2001) 021303.
    4. A D Martin, et al., Eur. Phys. J. C 63 (2009) 189.
    5. H L Lai, et al., Phys. Rev. D 82 (2010) 074024.
    6. T S Pettersson and P Lefevre, Tech. Rep. (1995)
    7. B Kol, arXiv preprint hep-ph/0207037 (2002).
    8. J Wess and J Bagger, “Supersymmetry and supergravity Univ” Princeton, USA (1992).
    9. D Bailin and A Love,” Bristol, UK: IOPGraduate student series in physics (1994).
    10. S B Giddings and S D Thomas, Phys. Rev. D 65 (2002) 056010.
    11. S Dimopoulos and G Landsberg, Phys. Rev. Lett. 87 (2001) 161602.
    12. S Hossenfelder, et al., Phys. Rev. D 66, 10 (2002) 101502.
    13. A Parker, Atl. Com. Phys. 1087 (2011).
    14. T Banks and W Fischler, arXiv preprint hep-th/9906038 (1999).
    15. L Evans and P Bryant, J. Instrum. 3, 08 (2008) S08001.
    16. T Linnecar, et al., LHC Proj. Rep. (2008) 1172.
    17. LEP design report. CERN, Geneva, J. Instrum. 3 (2008) 08002.
    18. A Chamblin and G C Nayak, Phys. Rev. D 66 (2002) 091901.
    19. P Kanti, “Black holes at the large Hadron collider” Physics of Black Holes, Berlin (2009).
    20. S C Park, Prog. Part. Nucl. Phys. 67, 3 (2012) 617.
    21. X Z Li, et al., Las. Part Beam 22, 4 (2004) 469.
    22. K Benakli, Phys. Rev. D 60 (1999) 104002.
    23. F Winterberg, “The Release of Thermonuclear Energy by Inertial Confinement: Ways Towards Ignition” World Scientific (2010).
    24. E G Adelberger, et al., Rev. Mod. Phys. 70, 4 (1998) 1265.
    25. W M Hooke, et al., Phys. Fluid. 8 (1965) 1146.
    26. K Hagino and N Takigawa, Prog. Theo. Phys. 128 (2012) 1001.
    27. A B Bendezu and W H Kniehl, Phys. Rev. D 59 (1998) 015009.
    28. J N Bahcall and R M May, Ast. J. 155 (1969) 501.
    29. S W Hawking, Comm. Math. Phys. 43 (1975) 199.

    31.V P Frolov and D Stojkovic, Phys. Rev. D 67 (2003) 084004.

    1. D Ida, K Y Oda, and S C Park, Phys. Rev. D 67 (2003) 064025.
    2. A Yazdani, Adv. High Energy Phys. 9 (2014) 349659.
    3. R Brandenberger, V Mukhanov, and T Prokopec, Phys. Rev. Lett. 69 (1992) 253606.
    4. H Hora, Las. Part. Beam 22 (2004) 439.
    5. K Nozari and S H Mehdipour, arXiv preprint gr-qc/0511110 (2005).
    6. R d'Inverno, “Introducing Einstein's Relatvity” Oxford University Press, USA (1899).
    7. K Nozari and S H Mehdipour, Class. Quantum Grav. 25 (2008) 175015.
    8. K Nozari and A S Sefidgar, Physics Letters B, 2 (2006) 635.
    9. K Nozari and A Yazdani, Chin. Phys. Lett 30 (2013) 4.

     

     

ارتقاء امنیت وب با وف ایرانی