Document Type : Original Article

Authors

1 Laboratoire des Matériaux, des Énergies et de l’Environnement, University of Biskra 07000, Algeria

2 Department of Physics, University of El-Oued, 39000, Algeria

3 Mechanical Department, Faculty of Technology, University of El-Oued, El-Oued 39000, Algeria

Abstract

The main objective of this work is to investigate a new material based on fluorine doped NiO thin films by spray deposition technique. Nickel nitrate hexahydrate Ni(NO3)2.6H2O and ammonium fluoride (NHF4) with a ratio of F/Ni = 0.04 were used to prepare F doped NiO. The structural, optical and electrical properties of F doped NiO thin films were investigated with different NiO:F solution volumes of 5, 10, 15 and 20 ml using the spray technique. The prepared F doped NiO thin films have a monocrystalline nature with a cubic structure; the (111) diffraction peak is the preferred orientation; the maximum crystallite size is 19.21 nm obtained for 20 ml. The optical property shows that the all the prepared F doped NiO thin films have a good transmittance of about 80 % in the visible region. The F doped NiO thin films deposited with 20 ml have a minimum optical gap energy of 3.51 eV and the highest value of Urbach energy of 0,689 meV. However, the thin film prepared with 5 ml has a minimum electrical resistivity of 231 Ω.cm, which can be used as a gas sensing.

Keywords

Main Subjects

  1. M H Raza, K Movlaee, Y Wu, S M El‐Refaei, M Karg, S G Leonardi, G Neri, and N Pinna, Electro. Chem 6 (2019) 383.
  2. S H Wang, S R Jian, G J  Chen, H Z Cheng, J Y  Juang, Coatings 9 (2019) 107.
  3. Y Aoun, M Marrakchi, S Benramache, B Benhaoua, S Lakel, and A Cheraf, Materials Research 21 (2018) e20170681.
  4. C Zaouche, A Gahtar, S Benramache et al. Digest Journal of Nanomaterials & Biostructures (DJNB) 17 (2022) 1453
  5. R S Kate, S C Bulakhe, and R J Deokate, Journal of Electronic Materials 48 (2019) 3220.
  6. V Panneerselvam, K K Chinnakutti, S T  Salammal, A K  Soman, K  Parasuraman, V  Vishwakarma, and V Kanagasabai, Applied Nanoscience 8 (2018) 1299.
  7. M Z Muzamil Aftab, A Dilawar, F Bashir, and Z H Aftab, Ceramics International 46 (2020) 5037.
  8. M Sh Abdel-wahab, H K  El Emam and W M A El Rouby, RSC Advances 13 (2023) 10818.
  9. K Sato, S Kim, S Komuro and X Zhao, Japanese Journal of Applied Physics 55 (2016) 06GJ10.
  10. N R Aswathy, J J Varghese, Sh Ranjini Nair, and R Vinod Kumar, Materials Chemistry and Physics 282 (2022) 125916.
  11. H S Rasheed, H I Abdulgafour, F M Hassan et al. Journal of Materials Science: Materials in Electronics 33 (2022) 18187.
  12. I L P Raj, S Valanarasu, A Asuntha et al. Journal of Materials Science: Materials in Electronics 33 (2022) 11753.
  13. X Chu, J Leng, J Liu et al. Journal of Materials Science: Materials in Electronics 27 (2016) 6408.
  14. M S Abdel-wahab, H K El Emam. & W M A  El Rouby,  Journal of Materials Science: Materials in Electronics 34 (2023) 1637.
  15. Y Zhao, J Yan, Y Huang et al. Journal of Materials Science: Materials in Electronics 29 (2018) 11498.
  16. R S Kate, S C Bulakhe and R J Deokate, Quant. Electron. 51 (2019) 319.
  17. H H Abdelhalium, M S Abdel-wahab, M T Tamm and W Z Tawfik, Phys. A, 129 (2023) 459.
  18. A Diha, S Benramache and L Fellah, Nano- Electron. Phys. 11 (2019) 03002.
  19. A Kumar and P P Sahay, Phys. A, 127 (2021) 286.
  20. A Gahtar, S Benramache, A Ammari, A Boukhachem and A Ziouche, Nano-Metal Chem. 52 (2022) 112.
  21. U Alver, H Yaykaşlı, S Kerli and A Tanrıverdi, J. Min. Met. Mater. 20 (2013) 1097.
  22. H Aydin, Sh A. Mansour, C Aydin, A A Al-Ghamdi, O A. Al-Hartomy, F El-Tantawy and F Yakuphanoglu, Sol-Gel Sci. Techn. 64 (2012) 728.
  23. S Kerli, and U Alver, Rep. 59 (2014) 1103.
  24. D P Joseph, M Saravanan, B Muthuraaman, P Renugambal, S Sambasivam, S P Raja, P Maruthamuthu and C Venkateswaran, Nanotechnology 19 (2008) 485707.
  25. M Aftab, M Z Butt, D Ali, F Bashir and T M Khan, Mater. 119 (2021) 111369.

ارتقاء امنیت وب با وف ایرانی