In order to increase productivity, reduce depreciation, and avoid possible accidents in a system such as fuel rods' melting and overpressure, control of temperature changes in the reactor core is an important factor. There are several methods for solving and analysing the stability of point kinetics equations. In most previous analyses, the effects of various factors on the temperature of the reactor core have been ignored. In this work, the effects of various dynamical parameters on the temperature of the reactor core and stability of the system in the presence of temperature feedback reactivity with external reactivity step, ramp and sinusoidal for six groups of delayed neutrons were studied using the method of Lyapunov exponent. The results proved to be in good agreement with other works


1. A A Nahla, Nuclear Engineering and Design 240 (2010) 1622.
2. S Tashakor, G Jahanfarnia, and M Hashemi-Tilehnoee, Annals of Nuclear Energy 37 (2010) 265.
3. A A Nahla, Annals of Nuclear Energy 38 (2011) 2810.
4. A A Nahla, Nuclear Engineering and Design 241 (2011) 1592.
5. S Yamoah, E H K Akaho, and B J B Nyarko, Annals of Nuclear Energy 54 (2013) 104.
6. M R Eskandari and M Shayesteh, Iranian Journal Physics Research 1 (1996) 29.
7. A Shirani, H Shamoradi, and I Shahabi, Iranian Journal Physics Research 10 (2010) 55.
8. T Sathiyasheela, Annals of Nuclear Energy 36 (2009) 246.
9. D L Hetrick, “Dynamics of Nuclear Reactor”, American Nuclear Society, Jbc, Illinois, USA (1993).
10. J R Lamarsh, “Introduction to Nuclear Reactor Theory”, Addison Wesley (1966).
11. D G Cacuci, “Handbook of Nuclear Engineering”, Springer (2010).
12. A Shirani, L Ranjbar, and I Shahabi, Iranian Journal of Physics Research 10 (2010) 273.
13. A E Aboanber and Y M Hamada, Annals of Nuclear Energy 30 ( 2003) 1111.
14. J C Allerd and D S Carter, Nucl. Sci. Eng. 3 ( 1958) 482.
15. L R Blue and M Hoffman, “Generalized program for the numerical solution of space independent reactor kinetics equations”, NAA - SR -Memo - 9197, North American Aviation (1963).
16. J Sanchez, Nuclear Science and Engineering 103 (1989) 10394.
17. J A W Da No´ rbrega, Nuclear Science and Engineering 46 (1971) 366.
18. A E Aboanber, Progress in Nuclear Energy, 44 (2004) 347.
19. J P Hennart, Nucl. Sci. Eng. 64 (1977) 875.
20. D Suescún Díaz, J F Flórez Ospina, and J A Rodríguez Sarasty, Annals of Nuclear Energy 42 (2012) 47.
21. F B Zhang, “Operating Physics of Nuclear Reactor”. Atomic Energy Press, Beijing (2000).
22. G Samuel, and S Alexander, “ Nuclear Reactor Engineering”, Chapman & Hall, Inc. (1994).
23. W Z Chen, B Kuang, L F Guo, Z Y Chen, and B Zhu, Nuclear Engineering and Design 236 (2006) 1326.
24. A A Nahla, Progress in Nuclear Energy 51 (2009) 124.
25. S D Hamieh, and M Saidinezhad, Annals of Nuclear Energy 42 (2012) 148.
26. R Della, E Alhassan, N A Adoo, C Y Bansah, B J B Nyarko, and E H K Akaho, Energy Conversion and Management 74 (2013) 587.
27. D E Seborg, T F Edgar, and D A Mellichamp, “Process Dynamics and Control”, John Wiley and Sons, Inc. (2004).
28. W K Ergen, H J Lipkin, and J A Nohel, Journal of Mathematics and Physics 36 (1957) 36.
29. E Jean-Jacques Slotine, and Weiping Li, “Applied Nonlinear Control”, Prentice Hall Englewood Cliffs, New Jersey (1991).
30. S T Strogatz, “Nonlinear Dynamics and Chaos”, Perseus Books Publishing (1994).
31. J J Duderstadt and L J Hamilton, “Nuclear Reactor Analysis”, John Wiley & Sons (1976).
32. E Ott, “Chaos in Dynamical System”, Cambridge University Press, Canada (1993).
33. B J West, A L Goldberger, G Rouner, and V Bhar-gava, Physica D 17 (1985) 198.
34. A Wolf, J B Swift, H L Swinney, and J A Vastano, Physica D 16 (1985) 285.
35. J R Dorfman, “An Introduction to Chaos in Nonequilibrium Statistical Mechanics”, Cambridge University Press, Cambridge (1999).
36. H Shibata, Physica A 292 (2001) 175.
37. H Shibata, Physica A 284 (2000) 124.
38. H Shibata, Physica A 285 (2000) 325.

ارتقاء امنیت وب با وف ایرانی