Author
Abstract
The Random Deposition model is the simplest model for surface growth, where there is no correlation between the neighbor sites of the lattice. In the Ballistic deposition model, the particles stick to the first neighbor particle; thus it is used to describe the deposition of the sticky particles. However, in many true-life phenomena involving surface growth, there is no adhesion. Instead, the friction between the particles leads to interlocking particles and the formation of porosity inside the growing bulk. Presenting a discrete 1+1 dimensional model, we study this case. In this model, if a particle is trapped between two other particles from right and left, it will stay in that position, as an equivalent for friction. The growth and roughness exponents are calculated, close to the Ballistic model, although there is no lateral growth.
Keywords